Performance Evaluation of Supported Ionic Liquid Membranes (SILMs) Derived from Optimized PES/PDMS/ZIF-L Composites for CO2 Separation

[1]  A. Ahmad,et al.  Prediction of CO2 Permeance across ZIF-L@PDMS/PES Composite Membrane , 2023, Membranes.

[2]  A. Ahmad,et al.  PES/ZIF‐L mixed‐matrix membrane for CO 2 permeation: Influence of ionic liquid in pre‐ and post‐modification treatment , 2022, Asia-Pacific Journal of Chemical Engineering.

[3]  A. Garea,et al.  Techno-Economic Optimization of Multistage Membrane Processes with Innovative Hollow Fiber Modules for the Production of High-Purity CO2 and CH4 from Different Sources , 2022, Industrial & engineering chemistry research.

[4]  Jianqiang Meng,et al.  Enhanced 2-D MOFs nanosheets/PES-g-PEG Mixed Matrix membrane for efficient CO2 separation , 2022, Chemical Engineering Research and Design.

[5]  Wen-Hsiung Lai,et al.  Photo-induced poly(styrene-[C1mim][Tf2N])-supported hollow fiber ionic liquid membranes to enhance CO2 separation , 2022, Journal of CO2 Utilization.

[6]  Yingnan Ma,et al.  Enhanced 2-D MOFs nanosheets/PIM-PMDA-OH mixed matrix membrane for efficient CO2 separation , 2022, Journal of Environmental Chemical Engineering.

[7]  Zenon Ziobrowski,et al.  Comparison of CO2 Separation Efficiency from Flue Gases Based on Commonly Used Methods and Materials , 2022, Materials.

[8]  J. Bellare,et al.  Zeolitic imidazolate framework-8 nanoparticles coated composite hollow fiber membranes for CO2/CH4 separation , 2021 .

[9]  R. Daik,et al.  A Succinct Review on the PVDF/Imidazolium-Based Ionic Liquid Blends and Composites: Preparations, Properties, and Applications , 2021, Processes.

[10]  Guipeng Yu,et al.  Covalent-organic frameworks (COFs)-based membranes for CO2 separation , 2020 .

[11]  M. Asghari,et al.  Dispersion engineering of MWCNT to control structural and gas transport properties of PU mixed matrix membranes , 2020 .

[12]  M. Kaspereit,et al.  Highly permeable innovative PDMS coated polyethersulfone membranes embedded with activated carbon for gas separation , 2020 .

[13]  Zhongde Dai,et al.  H2-selective Troger's base polymer based mixed matrix membranes enhanced by 2D MOFs , 2020 .

[14]  Jing-ge Ju,et al.  Polymer-supported ultra-thin two-dimensional ZIF-L membranes through in-situ interface exfoliation for gas separation. , 2020, Science bulletin.

[15]  Xiangcun Li,et al.  Ionic liquid tuning nanocage size of MOFs through a two-step adsorption/infiltration strategy for enhanced gas screening of mixed-matrix membranes , 2020, Journal of Membrane Science.

[16]  Ke Gong,et al.  CO2 -Philic Separation Membrane: Deep Eutectic Solvent Filled Graphene Oxide Nanoslits. , 2019, Small.

[17]  You-ting Wu,et al.  Supported Ionic Liquid Membranes with Dual-Site Interaction Mechanism for Efficient Separation of CO2 , 2019, ACS Sustainable Chemistry & Engineering.

[18]  A. Ahmad,et al.  Equilibrium and Kinetic Study of Bovine Serum Albumin (BSA) Adsorption onto Fabricated Polyethersulfone (PES)/Hydroxyapatite (HAP) Adsorptive Mixed Matrix Membrane (MMM) , 2019, Journal of Physical Science.

[19]  Neil B. McKeown,et al.  Gas Permeation Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers. , 2018, Chemical reviews.

[20]  Ashok Kumar,et al.  Statistical optimization of lactic acid extraction using Green Emulsion Ionic Liquid Membrane (GEILM) , 2018 .

[21]  A. Jilani,et al.  Structural transition from two-dimensional ZIF-L to three-dimensional ZIF-8 nanoparticles in aqueous room temperature synthesis with improved CO2 adsorption , 2018 .

[22]  T. Mohammadi,et al.  Improved CO2/CH4 separation using a nanocomposite ionic liquid gel membrane , 2017 .

[23]  Alper Uzun,et al.  Improving Gas Separation Performance of ZIF-8 by [BMIM][BF4] Incorporation: Interactions and Their Consequences on Performance , 2017 .

[24]  Yongsheng Chen,et al.  Synthesis and gas transport properties of poly(ionic liquid) based semi-interpenetrating polymer network membranes for CO2/N2 separation , 2017 .

[25]  T. Welton,et al.  Study on Gas Permeation and CO2 Separation through Ionic Liquid-Based Membranes with Siloxane-Functionalized Cations , 2017 .

[26]  B. Bhushan,et al.  Transparent, wear-resistant, superhydrophobic and superoleophobic poly(dimethylsiloxane) (PDMS) surfaces. , 2017, Journal of colloid and interface science.

[27]  A. Ahmad,et al.  Fouling evaluation of PES/ZnO mixed matrix hollow fiber membrane , 2017 .

[28]  Zhen Liu,et al.  CO 2 separation by supported ionic liquid membranes and prediction of separation performance , 2016 .

[29]  P. Alexandridis,et al.  Cellulose triacetate doped with ionic liquids for membrane gas separation , 2016 .

[30]  A. Ismail,et al.  Asymmetric hollow fiber membrane coated with polydimethylsiloxane–metal organic framework hybrid layer for gas separation , 2015 .

[31]  M. Rahimpour,et al.  The ability of artificial neural network in prediction of the acid gases solubility in different ionic liquids , 2015 .

[32]  D. Luebke,et al.  Mechanically robust hollow fiber supported ionic liquid membranes for CO2 separation applications , 2014 .

[33]  Á. Irabien,et al.  Acetate based Supported Ionic Liquid Membranes (SILMs) for CO2 separation: Influence of the temperature , 2014 .

[34]  Juin-Yih Lai,et al.  Study on microporous supported ionic liquid membranes for carbon dioxide capture , 2014 .

[35]  Zhigang Lei,et al.  Gas solubility in ionic liquids. , 2014, Chemical reviews.

[36]  Huanting Wang,et al.  A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. , 2013, Chemical communications.

[37]  S. S. Madaeni,et al.  Effect of coating method on gas separation by PDMS/PES membrane , 2013 .

[38]  O. Borodin,et al.  A molecular dynamics simulation study of the electric double layer and capacitance of [BMIM][PF6] and [BMIM][BF4] room temperature ionic liquids near charged surfaces. , 2013, Physical chemistry chemical physics : PCCP.

[39]  F. Kapteijn,et al.  Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential , 2013 .

[40]  S. S. Madaeni,et al.  Effect of titanium dioxide nanoparticles on polydimethylsiloxane/polyethersulfone composite membranes for gas separation , 2012 .

[41]  Thijs J. H. Vlugt,et al.  State-of-the-Art of CO2 Capture with Ionic Liquids , 2012 .

[42]  Wei Zhao,et al.  Effect of water in ionic liquid on the separation performance of supported ionic liquid membrane for CO2/N2 , 2010 .

[43]  Nándor Nemestóthy,et al.  Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids , 2010 .

[44]  Paul Scovazzo,et al.  Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research , 2009 .

[45]  L. Neves,et al.  Separation of biohydrogen by supported ionic liquid membranes , 2009 .

[46]  Joan F Brennecke,et al.  Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide: comparison to other ionic liquids. , 2007, Accounts of chemical research.

[47]  R. Baltus,et al.  Experimental Measurement of the Solubility and Diffusivity of CO2 in Room-Temperature Ionic Liquids Using a Transient Thin-Liquid-Film Method , 2007 .

[48]  Jason E. Bara,et al.  Bulk-fluid solubility and membrane feasibility of rmim-based room-temperature ionic liquids , 2006 .