Correlation of electrical and structural properties of single as-grown GaAs nanowires on Si (111) substrates.

We present the results of the study of the correlation between the electrical and structural properties of individual GaAs nanowires measured in their as-grown geometry. The resistance and the effective charge carrier mobility were extracted for several nanowires, and subsequently, the same nano-objects were investigated using X-ray nanodiffraction. This revealed a number of perfectly stacked zincblende and twinned zincblende units separated by axial interfaces. Our results suggest a correlation between the electrical parameters and the number of intrinsic interfaces.

[1]  Chennupati Jagadish,et al.  Electron mobilities approaching bulk limits in "surface-free" GaAs nanowires. , 2014, Nano letters.

[2]  P. Boesecke,et al.  Imaging of strain and lattice orientation by quick scanning X-ray microscopy combined with three-dimensional reciprocal space mapping , 2014 .

[3]  W. Prost,et al.  Resistance and dopant profiling along freestanding GaAs nanowires , 2013 .

[4]  Chennupati Jagadish,et al.  Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy , 2013, Nanotechnology.

[5]  K. Nielsch,et al.  Electrical transport in C‐doped GaAs nanowires: surface effects , 2013, 1304.5891.

[6]  A. Fontcuberta i Morral,et al.  Single-nanowire solar cells beyond the Shockley–Queisser limit , 2013, Nature Photonics.

[7]  B. Fimland,et al.  A story told by a single nanowire: optical properties of wurtzite GaAs. , 2012, Nano letters.

[8]  X. Tao,et al.  Electrostatics and electrical transport in semiconductor nanowire Schottky diodes , 2012 .

[9]  T. Fukui,et al.  A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.

[10]  U. Pietsch,et al.  Structural polytypism and residual strain in GaAs nanowires grown on Si(111) probed by single‐nanowire X‐ray diffraction , 2012 .

[11]  François Léonard,et al.  Electrical contacts to one- and two-dimensional nanomaterials. , 2011, Nature nanotechnology.

[12]  A. Diaz,et al.  Coherent x-ray wavefront reconstruction of a partially illuminated Fresnel zone plate. , 2011, Optics express.

[13]  G. Cirlin,et al.  Piezoelectric effect in GaAs nanowires , 2011 .

[14]  L. Nanver,et al.  X-ray Nanodiffraction on a Single SiGe Quantum Dot inside a Functioning Field-Effect Transistor , 2011, Nano letters.

[15]  A. Dey,et al.  Effects of crystal phase mixing on the electrical properties of InAs nanowires. , 2011, Nano letters.

[16]  Ray R. LaPierre,et al.  Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells , 2011 .

[17]  Martin Heiss,et al.  Impact of surfaces on the optical properties of GaAs nanowires , 2010 .

[18]  H. Shtrikman,et al.  Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111). , 2010, Nano letters.

[19]  Philippe Caroff,et al.  Crystal phase engineering in single InAs nanowires. , 2010, Nano letters.

[20]  J. Myoung,et al.  Junction properties of Au/ZnO single nanowire Schottky diode , 2010 .

[21]  M. Ahmetoglu,et al.  Determination of the parameters for the back-to-back switched Schottky barrier structures , 2010 .

[22]  S. T. Picraux,et al.  Transport characterization in nanowires using an electrical nanoprobe , 2010 .

[23]  B. M. Borg,et al.  Analysis of strain and stacking faults in single nanowires using Bragg coherent diffraction imaging , 2009, 0910.5491.

[24]  A. Bleloch,et al.  Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures , 2009, 0907.1444.

[25]  S. T. Picraux,et al.  Diameter-dependent electronic transport properties of Au-catalyst/Ge-nanowire Schottky diodes. , 2009, Physical review letters.

[26]  Xin Wang,et al.  Unusually strong space-charge-limited current in thin wires. , 2008, Physical review letters.

[27]  Gerhard Abstreiter,et al.  Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy , 2008 .

[28]  Lianmao Peng,et al.  Quantitative Analysis of Current–Voltage Characteristics of Semiconducting Nanowires: Decoupling of Contact Effects , 2007 .

[29]  M. Lazzarino,et al.  Growth by molecular beam epitaxy and electrical characterization of GaAs nanowires , 2007 .

[30]  Brian A. Korgel,et al.  Space charge limited currents and trap concentrations in GaAs nanowires , 2006 .

[31]  Thomas Richter,et al.  Size-dependent photoconductivity in MBE-grown GaN-nanowires. , 2005, Nano letters.

[32]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[33]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[34]  N. Cheung,et al.  Extraction of Schottky diode parameters from forward current-voltage characteristics , 1986 .

[35]  W. Oldham,et al.  n-n Semiconductor heterojunctions , 1963 .

[36]  Albert Rose,et al.  Space-Charge-Limited Currents in Solids , 1955 .