Scaling Variables and Asymptotic Expansions in Damped Wave Equations

Abstract We study the long time behavior of small solutions to the nonlinear damped wave equationeuττ+uτ=(a(ξ) uξ)ξ+ N (u, uξ, uτ),ξ∈R,τ⩾0, whereeis a positive, not necessarily small parameter. We assume that the diffusion coefficienta(ξ) converges to positive limitsa±asξ→±∞, and that the nonlinearity N (u, uξ, uτ) vanishes sufficiently fast asu→0. Introducing scaling variables and using various energy estimates, we compute an asymptotic expansion of the solutionu(ξ, τ) in powers ofτ−1/2asτ→+∞, and we show that this expansion is entirely determined, up to the second order, by a linear parabolic equation which depends only on the limiting valuesa±. In particular, this implies that the small solutions of the damped wave equation behave for largeτlike those of the parabolic equation obtained by settinge=0.

[1]  S. Levin Lectu re Notes in Biomathematics , 1983 .

[2]  Jack K. Hale,et al.  A damped hyperbolic equation on thin domains , 1992 .

[3]  O. Kavian,et al.  Large time behavior of solutions of a dissipative semilnear heat equation , 1995 .

[4]  E. Yanagida Existence of stable stationary solutions of scalar reaction-diffusion equations in thin tubular domains , 1990 .

[5]  Yoshikazu Giga,et al.  Characterizing Blow-up Using Similarity Variables , 1985 .

[6]  J. Solà-Morales,et al.  The singular limit dynamics of semilinear damped wave equations , 1989 .

[7]  Geoffrey Ingram Taylor,et al.  Diffusion by Continuous Movements , 1922 .

[8]  S. M. Verduyn Lunel,et al.  Stochastic and spatial structures of dynamical systems , 1996 .

[9]  Kenji Nishihara,et al.  Convergence Rates to Nonlinear Diffusion Waves for Solutions of System of Hyperbolic Conservation Laws with Damping , 1996 .

[10]  Joshua Kiddy K. Asamoah,et al.  Fractal–fractional age-structure study of omicron SARS-CoV-2 variant transmission dynamics , 2022, Partial Differential Equations in Applied Mathematics.

[11]  J. Hale,et al.  Lower semicontinuity of the attractor for a singularly perturbed hyperbolic equation , 1990 .

[12]  J. Eckmann,et al.  Geometric Stability Analysis for Periodic Solutions of the Swift-Hohenberg Equation , 1996, patt-sol/9612002.

[13]  C. Eugene Wayne,et al.  Invariant Manifolds for Parabolic Partial Differential Equations on Unbounded Domains , 1997 .

[14]  M. A. Herrero,et al.  Blow–Up Profiles in One–Dimensional. Semilinear Parabolic Problems , 1992 .

[15]  Hans G. Othmer,et al.  On a Nonlinear Hyperbolic Equation Describing Transmission Lines, Cell Movement, and Branching Random Walks , 1986 .

[16]  Otared Kavian,et al.  Remarks on the large time behaviour of a nonlinear diffusion equation , 1987 .

[17]  Victor A. Galaktionov,et al.  Asymptotic behaviour of nonlinear parabolic equations with critical exponents. A dynamical systems approach , 1991 .

[18]  J. Ball Strongly continuous semigroups, weak solutions, and the variation of constants formula , 1977 .

[19]  Fernández,et al.  Soliton dynamics in two-dimensional Josephson tunnel junctions. , 1993, Physical review. B, Condensed matter.

[20]  E. Zuazua A Dynamical System Approach to the Self-Similar Large Time Behavior in Scalar Convection-Diffusion Equations , 1994 .

[21]  Miguel Escobedo,et al.  Large time behavior for convection-diffusion equations in RN , 1991 .

[22]  V. Galaktionov,et al.  ON ASYMPTOTIC “EIGENFUNCTIONS” OF THE CAUCHY PROBLEM FOR A NONLINEAR PARABOLIC EQUATION , 1986 .

[23]  J. Bricmont,et al.  Stable Non-Gaussian Diffusive Profiles , 1993 .

[24]  Thierry Gallay,et al.  Scaling Variables and Stability of Hyperbolic Fronts , 1998, SIAM J. Math. Anal..

[25]  Jack K. Hale,et al.  Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation , 1988 .

[26]  Huebener,et al.  Lorentz contraction of flux quanta observed in experiments with annular Josephson tunnel junctions. , 1995, Physical review letters.

[27]  Geneviève Raugel,et al.  Dynamics of partial differential equations on thin domains , 1995 .

[28]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[29]  Miguel A. Herrero,et al.  Blow-up behaviour of one-dimensional semilinear parabolic equations , 1993 .

[30]  Antti Kupiainen,et al.  Renormalization Group and Asymptotics of Solutions of Nonlinear Parabolic Equations , 1993, chao-dyn/9306008.

[31]  J. Bricmont,et al.  Stable nongaussian diffusive profiles , 1996 .

[32]  Th. Gallay,et al.  Stability of travelling waves for a damped hyperbolic equation , 1996 .

[33]  Hatem Zaag,et al.  Optimal estimates for blowup rate and behavior for nonlinear heat equations , 1998 .

[34]  Kenji Nishihara,et al.  Asymptotic Behavior of Solutions of Quasilinear Hyperbolic Equations with Linear Damping , 1997 .

[35]  M. Kimura,et al.  An introduction to population genetics theory , 1971 .

[36]  S. Goldstein ON DIFFUSION BY DISCONTINUOUS MOVEMENTS, AND ON THE TELEGRAPH EQUATION , 1951 .

[37]  Tai-Ping Liu,et al.  Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping , 1992 .

[38]  G. Schneider Diffusive stability of spatial periodic solutions of the Swift-Hohenberg equation , 1996 .

[39]  J. Bricmont,et al.  Universality in blow-up for nonlinear heat equations , 1993 .

[40]  M. Kac A stochastic model related to the telegrapher's equation , 1974 .