Synthesis and Structure of Perrhenate Sodalite

Abstract Na8(AlSiO4)6(ReO4)2 sodalite was synthesized using a hydrothermal method and its crystal structure was determined from Rietveld refinement of experimental X-ray powder diffraction data. The refinement showed that this compound adopts the cubic sodalite structure (space group P 4 ¯ 3 n , #218) with a = 9.1528 (1) A. Raman spectroscopic measurements confirm the presence of tetrahedral ReO 4 - groups. Broadening of the asymmetric stretching and bending vibrational modes suggests the tetrahedra are slightly distorted from ideal Td symmetry in the sodalite lattice. MAS NMR of 29Si and 27Al nuclei showed single intense peaks at δiso = −92.4 ppm and δiso = 57.5 ppm, respectively, confirming the alternating Si, Al tetrahedral ordering in sodalite deduced from the structural data. Chemical shifts for 29Si and 27Al calculated using correlative structural parameters (56.6 ± 0.8 ppm and −92.3 ± 0.9 ppm) showed good agreement with measured data indicating the validity of data derived from the Rietveld structural refinement.

[1]  I. D. Brown,et al.  INORGANIC CRYSTAL STRUCTURE DATABASE , 1981 .

[2]  F. M. Mann,et al.  Hanford immobilized low-activity tank waste performance assessment , 1998 .

[3]  M. Weller,et al.  Synthesis of a range of anion-containing gallium and germanium sodalites , 2000 .

[4]  G. E. Leroi,et al.  Vibrational Spectra of Ammonium and Other Scheelite‐Type Perrhenates , 1972 .

[5]  R. Young,et al.  The Rietveld method , 2006 .

[6]  M. Weller,et al.  Synthesis and structures of M8[ALSiO4]6·(XO4)2, M = Na, Li, K; X = Cl, Mn Sodalites , 1994 .

[7]  M. Fechtelkord Influence of sodium ion dynamics on the 23Na quadrupolar interaction in sodalite: a high-temperature 23Na MAS NMR study. , 2000, Solid state nuclear magnetic resonance.

[8]  Josef-Christian Buhl,et al.  Synthesis and crystal structure of nitrate enclathrated sodalite Na8[AlSiO4]6(NO3)2 , 1996 .

[9]  G. Stucky,et al.  Structure and Spectroscopy of Sodalite Containing MnO4- Ions , 1994 .

[10]  A. J. Kropf,et al.  EXAFS/XANES studies of plutonium-loaded sodalite/glass waste forms , 2001 .

[11]  D. Rousseau,et al.  Normal mode determination in crystals , 1981 .

[12]  F. Hund Nitrit‐, Cyanid‐ und Rhodanid‐Sodalith , 1984 .

[13]  S. D. Balsley,et al.  Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm , 1998 .

[14]  Shas V. Mattigod,et al.  Radionuclide Incorporation in Secondary Crystalline Minerals from Chemical Weathering of Waste Glasses , 2002 .

[15]  Herbert T. Schaef,et al.  Laboratory Testing of Bulk Vitrified and Steam Reformed Low-Activity Waste Forms to Support A Preliminary Risk Assessment for an Integrated Disposal Facility , 2003 .

[16]  Walter Loewenstein,et al.  The distribution of aluminum in the tetrahedra of silicates and aluminates , 1954 .

[17]  P. D. Rittmann,et al.  Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds , 1995 .

[18]  S. R. Smith,et al.  The Raman spectrum and analysis of phonon modes in sodalite , 1981 .

[19]  S. Dann,et al.  Multinuclear MAS NMR studies of sodalitic framework materials , 2000 .

[20]  T. Gesing,et al.  Synthesis and crystal structure of rhodanide-enclathrated sodalite Na8[AlSiO4]6(SCN)2 , 2001 .

[21]  M. Grutzeck Zeolites synthesized from class F fly ash and sodium aluminate slurry , 2005 .

[22]  Gregg J. Lumetta,et al.  Status Report on Phase Identification in Hanford Tank Sludges , 2000 .