A single-dish survey of the HCO+, HCN, and CN emission toward the T Tauri disk population in Taurus

Context. The gas and dust content of protoplanetary disks evolves over the course of a few Myr. As the stellar X-ray and UV light penetration of the disk depends sensitively on the dust properties, trace molecular species like HCO + , HCN, and CN are expected to show marked differences from photoprocessing effects as the dust content in the disk evolves. Aims. We investigate specifically the evolution of the UV irradiation of the molecular gas in protoplanetary disks around a sample of classical T Tauri stars in Taurus that exhibit a wide range in grain growth and dust settling properties. Methods. We obtained HCO + (J = 3‐2), HCN(J = 3‐2), and CN(J = 2‐1) observations of 13 sources with the James Clerk Maxwell Telescope. Our sample has 1.3 mm fluxes in excess of 75 mJy, indicating the presence of significant dust reservoirs; a range of dust settling as traced through their spectral slopes between 6, 13, and 25 μm; varying degrees of grain growth as extrapolated from the strength of their 10-μm silicate emission feature; and complements data from the literature, essentially completing the molecular line coverage for the 21 brightest millimeter targets in the Taurus star-forming region. We compare the emission line strengths with the sources’ continuum flux and infrared features, and use detailed modeling based on two different model prescriptions to compare typical disk abundances for HCO + , HCN, and CN with the gas-line observations for our sample. Results. We detected HCO + (3‐2) toward 6 disks, HCN(3‐2) from 0 disks, and CN(2−1) toward 4 disks, with typical 3σ upper limits of 150−300 mK (Tmb )i n 0.2 kms −1 channels. For the complete sample, there is no correlation between the gas-line strengths or their ratios and either the sources’ dust continuum flux or infrared slope. Modeling shows that fractional abundances of 10 −9 −10 −11 can explain the line intensities observed, although significant modeling uncertainties remain. For DG Tau, which we model in great detail, we find that two very different temperature and density disk structures produce very similar lines for the same underlying abundances. ‐

[1]  L. Hartmann,et al.  THE DISK POPULATION OF THE TAURUS STAR-FORMING REGION , 2009, 0911.5457.

[2]  S. Wolf,et al.  THE TAURUS SPITZER SURVEY: NEW CANDIDATE TAURUS MEMBERS SELECTED USING SENSITIVE MID-INFRARED PHOTOMETRY , 2009, 0911.3176.

[3]  G. Schaefer,et al.  A MILLIMETER-WAVE INTERFEROMETRIC STUDY OF DUST AND CO DISKS AROUND LATE SPECTRAL TYPE STARS IN TAURUS-AURIGA , 2009 .

[4]  J. Carpenter,et al.  STRUCTURE AND EVOLUTION OF PRE-MAIN-SEQUENCE CIRCUMSTELLAR DISKS , 2009, 0906.2227.

[5]  D. Wilner,et al.  Gas and dust mass in the disc around the Herbig Ae star HD 169142 , 2008 .

[6]  T. Forveille,et al.  Molecules in the disk orbiting the twin young suns of V4046 Sagittarii , 2008, 0810.0472.

[7]  T. Henning,et al.  Chemistry in disks II. Poor molecular content of the AB Aurigae disk , 2008, 0809.3473.

[8]  E. Chapillon,et al.  Disks around CQ Tau and MWC 758: Dense PDRs or gas dispersal ? , 2008, 0805.3473.

[9]  T. Forveille,et al.  Molecules in the Circumstellar Disk Orbiting BP Piscium , 2008, 0805.2293.

[10]  D. Wilner,et al.  Gas and Dust Emission at the Outer Edge of Protoplanetary Disks , 2008, 0801.4763.

[11]  Lynne A. Hillenbrand,et al.  UV Excess Measures of Accretion onto Young Very Low Mass Stars and Brown Dwarfs , 2008, 0801.3525.

[12]  M. Audard,et al.  Discovery of a bipolar X-ray jet from the T Tauri star DG Tauri , 2007, 0712.1330.

[13]  J. Black,et al.  A computer program for fast non-LTE analysis of interstellar line spectra With diagnostic plots to interpret observed line intensity ratios , 2007, 0704.0155.

[14]  A. Dutrey,et al.  Probing the structure of protoplanetary disks: a comparative study of DM Tau, LkCa 15, and MWC 480 , 2007, astro-ph/0701425.

[15]  D. Vinkovic,et al.  Relation between the Luminosity of Young Stellar Objects and Their Circumstellar Environment , 2006, astro-ph/0612039.

[16]  C. Brinch,et al.  Searching for gas-rich disks around T Tauri stars in Lupus , 2006, astro-ph/0606302.

[17]  R. Indebetouw,et al.  Interpreting Spectral Energy Distributions from Young Stellar Objects. II. Fitting Observed SEDs Using a Large Grid of Precomputed Models , 2006, astro-ph/0612690.

[18]  Boulder,et al.  Highlights from the XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST) , 2006, astro-ph/0609160.

[19]  R. Indebetouw,et al.  Interpreting Spectral Energy Distributions from Young Stellar Objects. I. A Grid of 200,000 YSO Model SEDs , 2006, astro-ph/0608234.

[20]  Ithaca,et al.  A Survey and Analysis of Spitzer Infrared Spectrograph Spectra of T Tauri Stars in Taurus , 2006, astro-ph/0608038.

[21]  H. Kataza,et al.  Subaru/COMICS Study on Silicate Dust Processing around Young Low-Mass Stars , 2006 .

[22]  L. Mundy,et al.  Large dust particles in disks around T Tauri stars , 2005, astro-ph/0509555.

[23]  D. Shupe,et al.  Morphological studies of the Spitzer Wide-Area Infrared Extragalactic survey galaxy population in the UGC 10214 Hubble Space Telescope/Advanced Camera for Surveys field , 2005 .

[24]  N. Evans,et al.  Evidence for J- and H-Band Excess in Classical T Tauri Stars and the Implications for Disk Structure and Estimated Ages , 2005, astro-ph/0509036.

[25]  J. Beletic,et al.  Keck Interferometer Observations of Classical and Weak-line T Tauri Stars , 2005, astro-ph/0508561.

[26]  Jonathan P. Williams,et al.  Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective , 2005, astro-ph/0506187.

[27]  Subhanjoy Mohanty,et al.  The T Tauri Phase Down to Nearly Planetary Masses: Echelle Spectra of 82 Very Low Mass Stars and Brown Dwarfs , 2005, astro-ph/0502155.

[28]  O. Stahl,et al.  Edge-on T Tauri stars , 2005, astro-ph/0501582.

[29]  A. A. Kaas,et al.  The Effects of UV Continuum and Lyman α Radiation on the Chemical Equilibrium of T Tauri Disks , 2005 .

[30]  J. Najita,et al.  Heating Protoplanetary Disk Atmospheres , 2004 .

[31]  Russel J. White,et al.  On the Evolutionary Status of Class I Stars and Herbig-Haro Energy Sources in Taurus-Auriga , 2004, astro-ph/0408244.

[32]  J. Greaves Dense gas discs around T Tauri stars , 2004 .

[33]  Astronomy,et al.  Organic molecules in protoplanetary disks around T Tauri and Herbig Ae stars , 2004, astro-ph/0406577.

[34]  C. Dominik,et al.  The effect of dust settling on the appearance of protoplanetary disks , 2004, astro-ph/0405226.

[35]  Cfa,et al.  Study of the properties and spectral energy distributions of the Herbig AeBe stars HD 34282 and HD 141569 , 2004, astro-ph/0402599.

[36]  L. Observatory,et al.  Molecular inventories and chemical evolution of low-mass protostellar envelopes , 2003, astro-ph/0312231.

[37]  James Muzerolle,et al.  Unveiling the Inner Disk Structure of T Tauri Stars , 2003, astro-ph/0310067.

[38]  G. Herczeg,et al.  The Effects of UV Continuum and Lyman α Radiation on the Chemical Equilibrium of T Tauri Disks , 2003 .

[39]  M. Wolff,et al.  Two-dimensional Radiative Transfer in Protostellar Envelopes. I. Effects of Geometry on Class I Sources , 2003, astro-ph/0303479.

[40]  L. Testi,et al.  Large grains in the disk of CQ Tau , 2003, astro-ph/0303420.

[41]  G. V. Zadelhoff,et al.  Axi-symmetric models of ultraviolet radiative transfer with applications to circumstellar disk chemistry , 2002, astro-ph/0211014.

[42]  L. Testi,et al.  The kinematic relationship between disk and jet in the DG Tauri system , 2002, astro-ph/0209464.

[43]  F. Palla,et al.  Star Formation in Space and Time: Taurus-Auriga , 2002, astro-ph/0208554.

[44]  T. O. S. University,et al.  Warm molecular layers in protoplanetary disks , 2002, astro-ph/0202060.

[45]  A. Walsh,et al.  Evidence for a Developing Gap in a 10 Myr Old Protoplanetary Disk , 2002, astro-ph/0201425.

[46]  Astronomy,et al.  H2 and CO Emission from Disks around T Tauri and Herbig Ae Pre-Main-Sequence Stars and from Debris Disks around Young Stars: Warm and Cold Circumstellar Gas , 2001, astro-ph/0107006.

[47]  Austin,et al.  Observational Constraints on the Formation and Evolution of Binary Stars , 2001, astro-ph/0103098.

[48]  M. Simon,et al.  Dynamical Masses of T Tauri Stars and Calibration of Pre-Main-Sequence Evolution , 2000, astro-ph/0008370.

[49]  V. Mannings,et al.  High-Resolution Studies of Gas and Dust around Young Intermediate-Mass Stars. II. Observations of an Additional Sample of Herbig Ae Systems , 2000 .

[50]  G. Sandell,et al.  Testing Envelope Models of Young Stellar Objects with Submillimeter Continuum and Molecular-Line Observations , 2000, astro-ph/0001021.

[51]  Jun-Ichi Morino,et al.  First Detection of Submillimeter Polarization from T Tauri Stars , 1999 .

[52]  J. Afonso,et al.  HCN in Cloud Cores: A Good Tracer of Class 0 Young Stellar Objects , 1999 .

[53]  G. Blake,et al.  Envelope Structure on 700 AU Scales and the Molecular Outflows of Low-Mass Young Stellar Objects , 1998, The Astrophysical journal.

[54]  E. Herbst,et al.  The Sensitivity of Gas-Phase Chemical Models of Interstellar Clouds to C and O Elemental Abundances and to a New Formation Mechanism for Ammonia , 1998 .

[55]  R. Mundt,et al.  Imaging and Kinematic Studies of Young Stellar Object Jets in Taurus , 1998 .

[56]  V. Mannings,et al.  A High-Resolution Study of Gas and Dust around Young Intermediate-Mass Stars: Evidence for Circumstellar Disks in Herbig Ae Systems , 1997 .

[57]  G. Basri,et al.  The Classical T Tauri Spectroscopic Binary DQ Tau. II. Emission Line Variations with Orbital Phase. , 1997 .

[58]  T. Forveille,et al.  X-ray and molecular emission from the nearest region of recent star formation. , 1997, Science.

[59]  E. Chiang,et al.  Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.

[60]  S. Weidenschilling,et al.  The Origin of Comets in the Solar Nebula: A Unified Model , 1997 .

[61]  S. Church,et al.  Photodissociation and the CN: HCN ratio: observations of a ‘Third Bar2019; in OMC1 , 1996 .

[62]  Steven V. W. Beckwith,et al.  Circumstellar disks and the search for neighbouring planetary systems , 1996, Nature.

[63]  R. Kawabe,et al.  Imaging of the Compact Dust Disk around DG Tauri with 1'' Resolution , 1996 .

[64]  R. Kawabe,et al.  Aperture Synthesis 13CO (J = 1-0) Observations of the Molecular Gas around DG Tauri: Evidence for a Dispersing Gas Disk , 1996 .

[65]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[66]  P. Hartigan,et al.  Disk Accretion and Mass Loss from Young Stars , 1995 .

[67]  S. Sciortino,et al.  Einstein Observations of T Tauri Stars in Taurus-Auriga. I. Properties of X-Ray Emission , 1995 .

[68]  A. Sargent,et al.  Imaging the Small-Scale Circumstellar Gas Around T~Tauri Stars , 1995, astro-ph/9503034.

[69]  W. Dent,et al.  A molecular outflow driven by an optical jet , 1994 .

[70]  L. Hartmann,et al.  A new optical extinction law and distance estimate for the Taurus-Auriga molecular cloud , 1994 .

[71]  A. Harris,et al.  Submillimeter CO observations of warm gas around T Tauri stars , 1993 .

[72]  Steven V. W. Beckwith,et al.  Particle Emissivity in Circumstellar Disks , 1991 .

[73]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .

[74]  G. Herbig,et al.  Third Catalog of Emission-Line Stars of the Orion Population : 3 : 1988 , 1988 .

[75]  R. Goodrich,et al.  Near-simultaneous ultraviolet and optical spectrophotometry of T Tauri stars , 1986 .

[76]  George H. Herbig,et al.  Second Catalog of Emission-Line Stars of the Orion Population , 1972 .