An Exponential Time Integrator for the Incompressible Navier-Stokes Equation

We present an exponential time integration method for the incompressible Navier--Stokes equation. An essential step in our procedure is the treatment of the pressure by applying a divergence-free projection to the momentum equation. The differential-algebraic equation for the discrete velocity and pressure is then reduced to a conventional ordinary differential equation that can be solved with the proposed exponential integrator. A promising feature of exponential time integration is its potential time parallelism within the Paraexp algorithm. We demonstrate that our approach leads to parallel speedup assuming negligible parallel communication.

[1]  I. Moret,et al.  RD-Rational Approximations of the Matrix Exponential , 2004 .

[2]  Martin J. Gander,et al.  Analysis of a Krylov subspace enhanced parareal algorithm for linear problems , 2008 .

[3]  J. Lions,et al.  Résolution d'EDP par un schéma en temps « pararéel » , 2001 .

[4]  Albert E. Ruehli,et al.  WAVEFORM RELAXATION: THEORY AND PRACTICE , 1985 .

[5]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[6]  Robert L. Lee,et al.  Don''t suppress the wiggles|they''re telling you something! Computers and Fluids , 1981 .

[7]  O. Botella,et al.  BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .

[8]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[9]  Vu Thai Luan,et al.  Parallel exponential Rosenbrock methods , 2016, Comput. Math. Appl..

[10]  Martin J. Gander,et al.  PARAEXP: A Parallel Integrator for Linear Initial-Value Problems , 2013, SIAM J. Sci. Comput..

[11]  Rolf Krause,et al.  Convergence of Parareal for the Navier-Stokes equations depending on the Reynolds number , 2013, ArXiv.

[12]  Christopher K. Newman,et al.  Exponential Integrators for the Incompressible Navier{Stokes Equations , 2003 .

[13]  Raúl Sánchez,et al.  Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm , 2010, J. Comput. Phys..

[14]  A. Yu. Mikhalev,et al.  Iterative representing set selection for nested cross approximation , 2013, Numer. Linear Algebra Appl..

[15]  Howard C. Elman,et al.  Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.

[16]  Vu Thai Luan,et al.  Explicit exponential Runge-Kutta methods of high order for parabolic problems , 2013, J. Comput. Appl. Math..

[17]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[18]  Jörn Sesterhenn,et al.  Exponential time integration using Krylov subspaces , 2009 .

[19]  Andrew G. Gerber,et al.  Acceleration of unsteady hydrodynamic simulations using the parareal algorithm , 2017, J. Comput. Sci..

[20]  Yvon Maday,et al.  A Parareal in Time Semi-implicit Approximation of the Navier-Stokes Equations , 2005 .

[21]  Stefan Güttel,et al.  Generalized Rational Krylov Decompositions with an Application to Rational Approximation , 2015, SIAM J. Matrix Anal. Appl..

[22]  J.J.B. de Swart,et al.  PSIDE: Parallel software for implicit differential equations , 1997 .

[23]  Howard C. Elman,et al.  Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..

[24]  Martin J. Gander,et al.  Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..

[25]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[26]  Rolf Krause,et al.  Time parallel gravitational collapse simulation , 2015, ArXiv.

[27]  Junping Wang,et al.  Superconvergence of Finite Element Approximations for the Stokes Problem by Projection Methods , 2001, SIAM J. Numer. Anal..

[28]  Stefan Gottschalk,et al.  Parallel And Sequential Methods For Ordinary Differential Equations , 2016 .

[29]  Mike A. Botchev,et al.  A block Krylov subspace implementation of the time-parallel Paraexp method and its extension for nonlinear partial differential equations , 2015, J. Comput. Appl. Math..

[30]  David F. Griffiths,et al.  Adaptive Time-Stepping for Incompressible Flow Part II: Navier--Stokes Equations , 2010, SIAM J. Sci. Comput..

[31]  Terry Haut,et al.  An Asymptotic Parallel-in-Time Method for Highly Oscillatory PDEs , 2013, SIAM J. Sci. Comput..

[32]  Mike A. Botchev,et al.  A block Krylov subspace time‐exact solution method for linear ordinary differential equation systems , 2013, Numer. Linear Algebra Appl..

[33]  Rolf Krause,et al.  A space-time parallel solver for the three-dimensional heat equation , 2013, PARCO.

[34]  B. D. Semeraro,et al.  Application of Krylov exponential propagation to fluid dynamics equations , 1991 .

[35]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .

[36]  Andrew J. Wathen,et al.  Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.

[37]  Zhen Wang,et al.  A parallel implementation of the modified augmented Lagrangian preconditioner for the incompressible Navier–Stokes equations , 2012, Numerical Algorithms.

[38]  Jan S. Hesthaven,et al.  On the Use of Reduced Basis Methods to Accelerate and Stabilize the Parareal Method , 2014 .

[39]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[40]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[41]  Hiroko Morimoto,et al.  On the Navier-Stokes initial value problem , 1974 .

[42]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .

[43]  P. Wesseling Principles of Computational Fluid Dynamics , 2000 .

[44]  Martin J. Gander,et al.  Analysis of the Parareal Algorithm Applied to Hyperbolic Problems Using Characteristics , 2008 .

[45]  Anthony T. Patera,et al.  Analysis of Iterative Methods for the Steady and Unsteady Stokes Problem: Application to Spectral Element Discretizations , 1993, SIAM J. Sci. Comput..

[46]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[47]  C. Bruneau,et al.  The 2D lid-driven cavity problem revisited , 2006 .

[48]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[49]  Rolf Krause,et al.  Explicit Parallel-in-time Integration of a Linear Acoustic-Advection System , 2012, ArXiv.

[50]  Xiaoying Dai,et al.  Stable Parareal in Time Method for First- and Second-Order Hyperbolic Systems , 2012, SIAM J. Sci. Comput..

[51]  Howard C. Elman,et al.  IFISS: A Computational Laboratory for Investigating Incompressible Flow Problems , 2014, SIAM Rev..

[52]  W. S. Edwards,et al.  Krylov methods for the incompressible Navier-Stokes equations , 1994 .

[53]  Rolf Krause,et al.  Hybrid Space-Time Parallel Solution of Burgers Equation , 2014 .

[54]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[55]  L. Knizhnerman,et al.  Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..

[56]  Alexandre Joel Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations* , 1989 .

[57]  Stefan Güttel,et al.  A black-box rational Arnoldi variant for Cauchy–Stieltjes matrix functions , 2013 .

[58]  O. Nevanlinna,et al.  Convergence of dynamic iteration methods for initial value problems , 1987 .

[59]  S. Goreinov,et al.  How to find a good submatrix , 2010 .

[60]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[61]  Y. Maday,et al.  Symmetric parareal algorithms for Hamiltonian systems , 2010, 1011.6222.