An Exponential Time Integrator for the Incompressible Navier-Stokes Equation
暂无分享,去创建一个
[1] I. Moret,et al. RD-Rational Approximations of the Matrix Exponential , 2004 .
[2] Martin J. Gander,et al. Analysis of a Krylov subspace enhanced parareal algorithm for linear problems , 2008 .
[3] J. Lions,et al. Résolution d'EDP par un schéma en temps « pararéel » , 2001 .
[4] Albert E. Ruehli,et al. WAVEFORM RELAXATION: THEORY AND PRACTICE , 1985 .
[5] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[6] Robert L. Lee,et al. Don''t suppress the wiggles|they''re telling you something! Computers and Fluids , 1981 .
[7] O. Botella,et al. BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .
[8] C. Loan,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .
[9] Vu Thai Luan,et al. Parallel exponential Rosenbrock methods , 2016, Comput. Math. Appl..
[10] Martin J. Gander,et al. PARAEXP: A Parallel Integrator for Linear Initial-Value Problems , 2013, SIAM J. Sci. Comput..
[11] Rolf Krause,et al. Convergence of Parareal for the Navier-Stokes equations depending on the Reynolds number , 2013, ArXiv.
[12] Christopher K. Newman,et al. Exponential Integrators for the Incompressible Navier{Stokes Equations , 2003 .
[13] Raúl Sánchez,et al. Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm , 2010, J. Comput. Phys..
[14] A. Yu. Mikhalev,et al. Iterative representing set selection for nested cross approximation , 2013, Numer. Linear Algebra Appl..
[15] Howard C. Elman,et al. Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.
[16] Vu Thai Luan,et al. Explicit exponential Runge-Kutta methods of high order for parabolic problems , 2013, J. Comput. Appl. Math..
[17] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[18] Jörn Sesterhenn,et al. Exponential time integration using Krylov subspaces , 2009 .
[19] Andrew G. Gerber,et al. Acceleration of unsteady hydrodynamic simulations using the parareal algorithm , 2017, J. Comput. Sci..
[20] Yvon Maday,et al. A Parareal in Time Semi-implicit Approximation of the Navier-Stokes Equations , 2005 .
[21] Stefan Güttel,et al. Generalized Rational Krylov Decompositions with an Application to Rational Approximation , 2015, SIAM J. Matrix Anal. Appl..
[22] J.J.B. de Swart,et al. PSIDE: Parallel software for implicit differential equations , 1997 .
[23] Howard C. Elman,et al. Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..
[24] Martin J. Gander,et al. Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..
[25] F. Harlow,et al. Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .
[26] Rolf Krause,et al. Time parallel gravitational collapse simulation , 2015, ArXiv.
[27] Junping Wang,et al. Superconvergence of Finite Element Approximations for the Stokes Problem by Projection Methods , 2001, SIAM J. Numer. Anal..
[28] Stefan Gottschalk,et al. Parallel And Sequential Methods For Ordinary Differential Equations , 2016 .
[29] Mike A. Botchev,et al. A block Krylov subspace implementation of the time-parallel Paraexp method and its extension for nonlinear partial differential equations , 2015, J. Comput. Appl. Math..
[30] David F. Griffiths,et al. Adaptive Time-Stepping for Incompressible Flow Part II: Navier--Stokes Equations , 2010, SIAM J. Sci. Comput..
[31] Terry Haut,et al. An Asymptotic Parallel-in-Time Method for Highly Oscillatory PDEs , 2013, SIAM J. Sci. Comput..
[32] Mike A. Botchev,et al. A block Krylov subspace time‐exact solution method for linear ordinary differential equation systems , 2013, Numer. Linear Algebra Appl..
[33] Rolf Krause,et al. A space-time parallel solver for the three-dimensional heat equation , 2013, PARCO.
[34] B. D. Semeraro,et al. Application of Krylov exponential propagation to fluid dynamics equations , 1991 .
[35] J. Kan. A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .
[36] Andrew J. Wathen,et al. Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.
[37] Zhen Wang,et al. A parallel implementation of the modified augmented Lagrangian preconditioner for the incompressible Navier–Stokes equations , 2012, Numerical Algorithms.
[38] Jan S. Hesthaven,et al. On the Use of Reduced Basis Methods to Accelerate and Stabilize the Parareal Method , 2014 .
[39] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[40] U. Ghia,et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .
[41] Hiroko Morimoto,et al. On the Navier-Stokes initial value problem , 1974 .
[42] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .
[43] P. Wesseling. Principles of Computational Fluid Dynamics , 2000 .
[44] Martin J. Gander,et al. Analysis of the Parareal Algorithm Applied to Hyperbolic Problems Using Characteristics , 2008 .
[45] Anthony T. Patera,et al. Analysis of Iterative Methods for the Steady and Unsteady Stokes Problem: Application to Spectral Element Discretizations , 1993, SIAM J. Sci. Comput..
[46] A. Chorin. Numerical Solution of the Navier-Stokes Equations* , 1989 .
[47] C. Bruneau,et al. The 2D lid-driven cavity problem revisited , 2006 .
[48] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[49] Rolf Krause,et al. Explicit Parallel-in-time Integration of a Linear Acoustic-Advection System , 2012, ArXiv.
[50] Xiaoying Dai,et al. Stable Parareal in Time Method for First- and Second-Order Hyperbolic Systems , 2012, SIAM J. Sci. Comput..
[51] Howard C. Elman,et al. IFISS: A Computational Laboratory for Investigating Incompressible Flow Problems , 2014, SIAM Rev..
[52] W. S. Edwards,et al. Krylov methods for the incompressible Navier-Stokes equations , 1994 .
[53] Rolf Krause,et al. Hybrid Space-Time Parallel Solution of Burgers Equation , 2014 .
[54] S. Cox,et al. Exponential Time Differencing for Stiff Systems , 2002 .
[55] L. Knizhnerman,et al. Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..
[56] Alexandre Joel Chorin,et al. On the Convergence of Discrete Approximations to the Navier-Stokes Equations* , 1989 .
[57] Stefan Güttel,et al. A black-box rational Arnoldi variant for Cauchy–Stieltjes matrix functions , 2013 .
[58] O. Nevanlinna,et al. Convergence of dynamic iteration methods for initial value problems , 1987 .
[59] S. Goreinov,et al. How to find a good submatrix , 2010 .
[60] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[61] Y. Maday,et al. Symmetric parareal algorithms for Hamiltonian systems , 2010, 1011.6222.