Spatially variant periodic structures in electromagnetics

Spatial transforms are a popular technique for designing periodic structures that are macroscopically inhomogeneous. The structures are often required to be anisotropic, provide a magnetic response, and to have extreme values for the constitutive parameters in Maxwell's equations. Metamaterials and photonic crystals are capable of providing these, although sometimes only approximately. The problem still remains about how to generate the geometry of the final lattice when it is functionally graded, or spatially varied. This paper describes a simple numerical technique to spatially vary any periodic structure while minimizing deformations to the unit cells that would weaken or destroy the electromagnetic properties. New developments in this algorithm are disclosed that increase efficiency, improve the quality of the lattices and provide the ability to design aplanatic metasurfaces. The ability to spatially vary a lattice in this manner enables new design paradigms that are not possible using spatial transforms, three of which are discussed here. First, spatially variant self-collimating photonic crystals are shown to flow unguided waves around very tight bends using ordinary materials with low refractive index. Second, multi-mode waveguides in spatially variant band gap materials are shown to guide waves around bends without mixing power between the modes. Third, spatially variant anisotropic materials are shown to sculpt the near-field around electric components. This can be used to improve electromagnetic compatibility between components in close proximity.

[1]  D. González-Ovejero,et al.  Metasurface leaky-wave antennas: A comparison between slot and patch implementation , 2014, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[2]  Helmut Bölcskei,et al.  An overview of MIMO communications - a key to gigabit wireless , 2004, Proceedings of the IEEE.

[3]  Frank Herman,et al.  Symmetry Principles in Solid State and Molecular Physics , 1974 .

[4]  Raymond C Rumpf,et al.  Optimization of planar self-collimating photonic crystals. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[6]  X. Wan,et al.  Planar bifunctional Luneburg‐fisheye lens made of an anisotropic metasurface , 2014 .

[7]  D. E. Aspnes,et al.  Bounds on allowed values of the effective dielectric function of two-component composites at finite frequencies , 1982 .

[8]  D. Werner,et al.  Transformation Electromagnetics: An Overview of the Theory and Applications , 2010, IEEE Antennas and Propagation Magazine.

[9]  Toshihiko Baba,et al.  Finite difference time domain study of high efficiency photonic crystal superprisms. , 2004, Optics express.

[10]  Steven G. Johnson,et al.  On-chip transformation optics for multimode waveguide bends , 2012, Nature Communications.

[11]  B. Mazari,et al.  Applications of the Near-Field Techniques in EMC Investigations , 2007, IEEE Transactions on Electromagnetic Compatibility.

[12]  Björn Jawerth,et al.  An Overview of the Theory and Applications of Wavelets , 1994 .

[13]  E. Centeno,et al.  Graded photonic crystals. , 2005, Optics letters.

[14]  Graded wavelike two-dimensional photonic crystal made of thin films. , 2008, Applied optics.

[15]  Didier Lippens,et al.  An all-dielectric route for terahertz cloaking. , 2008, Optics express.

[16]  D. Citrin,et al.  Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  Marcin Paprzycki,et al.  High Performance Computing: Challenges for Future Systems , 1998, IEEE Concurrency.

[18]  Xiang Wan,et al.  A broadband transformation-optics metasurface lens , 2014 .

[19]  A. Tomita,et al.  Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide , 2000 .

[20]  R. Gajić,et al.  Controlling electromagnetic fields with graded photonic crystals in metamaterial regime. , 2010, Optics express.

[21]  Jeremy Witzens,et al.  Self-collimation in planar photonic crystals , 2002 .

[22]  Federico Capasso,et al.  Aberrations of flat lenses and aplanatic metasurfaces. , 2013, Optics express.

[23]  E G Johnson,et al.  Nanofabrication of a space-variant optical transmission filter. , 2006, Optics letters.

[24]  David R. Smith,et al.  An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials , 2012, IEEE Antennas and Propagation Magazine.

[25]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[26]  Hiroyuki Tsuda,et al.  Diffractive optical elements using the subwavelength scale pillar array structure , 2004, SPIE OPTO.

[27]  F. Lederer,et al.  Self-collimation of light in three-dimensional photonic crystals. , 2005, Optics express.

[28]  W. Davis,et al.  GUIDED-MODE RESONANCE FILTER COMPENSATED TO OPERATE ON A CURVED SURFACE , 2013 .

[29]  A. Kildishev,et al.  Transformation optics and metamaterials , 2011 .

[30]  Alok Mehta,et al.  Design and optimization of space-variant photonic crystal filters. , 2007, Applied optics.

[31]  R. Gajić,et al.  Self-focusing media using graded photonic crystals: Focusing, Fourier transforming and imaging, directive emission, and directional cloaking , 2011 .

[32]  E. Semouchkina,et al.  Low scattering microwave cloaking by all-dielectric metamaterials , 2012, Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation.

[33]  Dennis W. Prather,et al.  Photonic Crystals: Theory, Applications and Fabrication , 2009 .

[34]  David R. Smith,et al.  Infrared metamaterial phase holograms. , 2012, Nature materials.

[35]  Tzong-Lin Wu,et al.  Overview of Power Integrity Solutions on Package and PCB: Decoupling and EBG Isolation , 2010, IEEE Transactions on Electromagnetic Compatibility.

[36]  S. Criel,et al.  Near-field scanner for the accurate characterization of electromagnetic fields in the close vicinity of electronic devices and systems , 1996, Quality Measurement: The Indispensable Bridge between Theory and Reality (No Measurements? No Science! Joint Conference - 1996: IEEE Instrumentation and Measurement Technology Conference and IMEKO Tec.

[37]  Steven G. Johnson,et al.  Broadband super-collimation in a hybrid photonic crystal structure. , 2009, Optics express.

[38]  S. Kuebler,et al.  Effect of refractive index mismatch on multi-photon direct laser writing. , 2012, Optics express.

[39]  Steven C. Chapra,et al.  Numerical Methods for Engineers , 1986 .

[40]  Sun-Goo Lee,et al.  Propagation of spoof surface plasmon on metallic square lattice: bending and splitting of self-collimated beams. , 2014, Optics express.

[41]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[42]  S. Noda,et al.  Waveguides and waveguide bends in two-dimensional photonic crystal slabs , 2000 .

[43]  Qi Jie Wang,et al.  Designer spoof surface plasmon structures collimate terahertz laser beams. , 2010, Nature materials.

[44]  Jun Fan,et al.  Signal Integrity Design for High-Speed Digital Circuits: Progress and Directions , 2010, IEEE Transactions on Electromagnetic Compatibility.

[45]  Shanhui Fan,et al.  Conditions for self-collimation in three-dimensional photonic crystals. , 2005, Optics letters.

[46]  Douglas Brooks,et al.  Signal Integrity Issues and Printed Circuit Board Design , 2003 .

[47]  Raymond C. Rumpf,et al.  ELECTROMAGNETIC ISOLATION OF A MICROSTRIP BY EMBEDDING IN A SPATIALLY VARIANT , 2013 .

[48]  C. Schow,et al.  Terabit/s-Class Optical PCB Links Incorporating 360-Gb/s Bidirectional 850 nm Parallel Optical Transceivers , 2012, Journal of Lightwave Technology.

[49]  Ari Sihvola,et al.  Metamaterials in electromagnetics , 2007 .

[50]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[51]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[52]  H. Mosallaei,et al.  Functional-Graded Index Metasurfaces for Infrared Radiation and Guiding , 2015, IEEE Transactions on Nanotechnology.

[53]  L. Vivien,et al.  Short-Wavelength Light Propagation in Graded Photonic Crystals , 2011, Journal of Lightwave Technology.

[54]  Peter Ingo Borel,et al.  Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization , 2004 .

[55]  Bayaner Arigong,et al.  Holographic fabrication of functionally graded photonic lattices through spatially specified phase patterns. , 2014, Applied optics.

[56]  M. Terrones,et al.  Pure and doped boron nitride nanotubes , 2007 .

[57]  D. J. Gregoire 3-D Conformal Metasurfaces , 2013, IEEE Antennas and Wireless Propagation Letters.

[58]  F. Caminita,et al.  Non-Uniform Metasurface Luneburg Lens Antenna Design , 2012, IEEE Transactions on Antennas and Propagation.

[59]  T.H. Hubing,et al.  The Electromagnetic Compatibility of Integrated Circuits—Past, Present, and Future , 2009, IEEE Transactions on Electromagnetic Compatibility.

[60]  S. Oh,et al.  Self-collimation phenomena of surface waves in structured perfect electric conductors and metal surfaces. , 2007, Optics express.

[61]  Hojjat Adeli,et al.  High-Performance Computing for Large-Scale Analysis, Optimization, and Control , 2000 .

[62]  M.A. Jensen,et al.  A review of antennas and propagation for MIMO wireless communications , 2004, IEEE Transactions on Antennas and Propagation.

[63]  Sasan Fathpour,et al.  Tight control of light beams in photonic crystals with spatially-variant lattice orientation. , 2014, Optics express.

[64]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[65]  Richard V. Penty,et al.  A 40 Gb/s Optical Bus for Optical Backplane Interconnections , 2014, Journal of Lightwave Technology.

[66]  Xavier Le Roux,et al.  Experimental demonstration of light bending at optical frequencies using a non-homogenizable graded photonic crystal. , 2012, Optics express.

[67]  Andrea Alù,et al.  Optical metasurfaces with robust angular response on flexible substrates , 2011 .

[68]  Masaya Notomi,et al.  Self-collimating phenomena in photonic crystals , 1999 .

[69]  Ryan B. Wicker,et al.  3D printing of anisotropic metamaterials , 2012 .

[70]  Dennis W Prather,et al.  Experimental demonstration of self-collimation inside a three-dimensional photonic crystal. , 2006, Physical review letters.

[71]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[72]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[73]  Menelaos K. Poutous,et al.  Azimuthally Varying Guided Mode Resonance Filters , 2012, Micromachines.

[74]  Tommaso Baldacchini,et al.  Multiphoton fabrication. , 2007, Angewandte Chemie.

[75]  Stephen M. Kuebler NONLINEAR OPTICS, APPLICATIONS | Three-Dimensional Microfabrication , 2005 .

[76]  En-Xiao Liu,et al.  Progress Review of Electromagnetic Compatibility Analysis Technologies for Packages, Printed Circuit Boards, and Novel Interconnects , 2010, IEEE Transactions on Electromagnetic Compatibility.

[77]  J. Joannopoulos,et al.  Compact Bends for Multi-mode Photonic Crystal Waveguides with High Transmission and Suppressed Modal Crosstalk References and Links , 2022 .

[78]  Pradeep Srinivasan,et al.  Spatial and spectral beam shaping with space-variant guided mode resonance filters. , 2009, Optics express.

[79]  Ekmel Ozbay,et al.  The focusing effect of graded index photonic crystals , 2008 .

[80]  Susumu Noda,et al.  Highly confined waveguides and waveguide bends in three-dimensional photonic crystal , 1999 .

[81]  Federico Capasso,et al.  Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[82]  J. Witzens,et al.  Mode matching interface for efficient coupling of light into planar photonic crystals , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[83]  B. B. Oner,et al.  High-efficiency beam bending using graded photonic crystals. , 2013, Optics letters.

[84]  William L. Barnes,et al.  Plasmonic meta-atoms and metasurfaces , 2014, Nature Photonics.

[85]  Michael A. Jensen,et al.  Mutual coupling in MIMO wireless systems: a rigorous network theory analysis , 2004, IEEE Transactions on Wireless Communications.

[86]  Lien-Wen Chen,et al.  High transmission efficiency of arbitrary waveguide bends formed by graded index photonic crystals , 2011 .

[87]  Alok Mehta,et al.  Spatially polarizing autocloned elements. , 2007, Optics letters.

[88]  David Cassagne,et al.  Mirage and superbending effect in two-dimensional graded photonic crystals , 2006 .

[89]  J. Joannopoulos,et al.  High Transmission through Sharp Bends in Photonic Crystal Waveguides. , 1996, Physical review letters.

[90]  Luneburg lens composed of sunflower-type graded photonic Crystals , 2014 .

[91]  Fabrication of Metal Photonic Crystals with Graded Lattice Spacing by Using Micro-Stereolithography , 2009 .

[92]  Raymond C. Rumpf,et al.  SIMPLE IMPLEMENTATION OF ARBITRARILY SHAPED TOTAL-FIELD/SCATTERED-FIELD REGIONS IN FINITE- DIFFERENCE FREQUENCY-DOMAIN , 2012 .

[93]  R. Wicker,et al.  3D Printed Lattices with Spatially Variant Self-Collimation , 2013 .

[94]  K. Ho,et al.  Light coupling with multimode photonic crystal waveguides , 2004 .

[95]  Raymond C Rumpf,et al.  Fabrication of metal-oxide nano-hairs for effective index optical elements. , 2013, Optics express.

[96]  S. A. R. Horsley,et al.  Removing singular refractive indices with sculpted surfaces , 2014, Scientific Reports.

[97]  R. Hansen Phased Array Antennas , 2009 .

[98]  Raymond C. Rumpf,et al.  Synthesis of spatially variant lattices. , 2012, Optics express.