Corrosion behavior of T91 tubing in high temperature supercritical carbon dioxide environment

[1]  Ö. Doğan,et al.  Temperature-dependence of oxidation and carburization of Grade 91 steel in CO2 containing impurities , 2022, Corrosion Science.

[2]  Wenjun Kuang,et al.  Corrosion Behaviors of Heat-Resisting Alloys in High Temperature Carbon Dioxide , 2022, Materials.

[3]  Z. Yue,et al.  The effect of tensile stress on oxidation behavior of nickel-base single crystal superalloy , 2021 .

[4]  Jinliang Xu,et al.  Economic comparison between sCO2 power cycle and water-steam Rankine cycle for coal-fired power generation system , 2021, Energy Conversion and Management.

[5]  Junqing Pan,et al.  Fe7C3 nanoparticles with in situ grown CNT on nitrogen doped hollow carbon cube with greatly enhanced conductivity and ORR performance for alkaline fuel cell , 2021 .

[6]  A. Vasiliev,et al.  Core@shell nanocomposites Fe7C3 / FexOy /C obtained by high pressure-high temperature treatment of ferrocene Fe(C5H5)2 , 2021 .

[7]  Ö. Doğan,et al.  Effect of Specimen Thickness on the Degradation of Mechanical Properties of Ferritic-Martensitic P91 Steel by Direct-fired Supercritical CO2 Power Cycle Environment , 2020, Metallurgical and Materials Transactions A.

[8]  Q. Zhao,et al.  Corrosion behavior and lifetime prediction of VM12, Sanicro 25 and Inconel 617 in supercritical carbon dioxide at 600 °C , 2020 .

[9]  Sung Hwan Kim,et al.  Development of aluminide diffusion coatings on ODS ferritic-martensitic steel for corrosion resistance in high temperature super critical-carbon dioxide environment , 2020 .

[10]  Ö. Doğan,et al.  Effect of Surface Finish on High-Temperature Oxidation of Steels in CO2, Supercritical CO2, and Air , 2019, Oxidation of Metals.

[11]  Jizhen Liu,et al.  Perspective of S−CO2 power cycles , 2019, Energy.

[12]  Q. Zhao,et al.  Corrosion and Carburization Behavior of Heat-Resistant Steels in a High-Temperature Supercritical Carbon Dioxide Environment , 2019, Oxidation of Metals.

[13]  Q. Zhao,et al.  Corrosion Behavior of Heat-Resistant Materials in High-Temperature Carbon Dioxide Environment , 2018, JOM.

[14]  I. Dincer,et al.  Energy and exergy analyses of a parabolic trough solar power plant using carbon dioxide power cycle , 2018 .

[15]  Kun Wang,et al.  The development technology and applications of supercritical CO2 power cycle in nuclear energy, solar energy and other energy industries , 2017 .

[16]  T. Nguyen,et al.  Corrosion resistance of chromised and aluminised coatings in wet CO2 gas at 650 °C , 2017 .

[17]  Andrea Cioncolini,et al.  On the adoption of carbon dioxide thermodynamic cycles for nuclear power conversion: A case study applied to Mochovce 3 Nuclear Power Plant , 2016 .

[18]  Ö. Doğan,et al.  Oxidation of alloys for energy applications in supercritical CO2 and H2O , 2016 .

[19]  F. Rouillard,et al.  Corrosion of 9-12Cr ferritic–martensitic steels in high-temperature CO2 , 2016 .

[20]  C. Pandey,et al.  Effect of Long-term Ageing on the Microstructure and Mechanical Properties of Creep Strength Enhanced Ferritic P91 Steel , 2016, Transactions of the Indian Institute of Metals.

[21]  M. Tabarant,et al.  Comparative oxidation behaviour of Fe-9Cr steel in CO2 and H2O at 550 °C: Detailed analysis of the inner oxide layer , 2015 .

[22]  H. Lee,et al.  Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment , 2015 .

[23]  Fahad A. Al-Sulaiman,et al.  Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower , 2015 .

[24]  W. J. Quadakkers,et al.  Non-steady state carburisation of martensitic 9–12%Cr steels in CO2 rich gases at 550 °C , 2014 .

[25]  J. I. Inayat-Hussain,et al.  Estimation of oxide scale growth and temperature increase of high (9–12%) chromium martensitic steels of superheater tubes , 2013 .

[26]  T. Nguyen,et al.  Effects of cerium and manganese on corrosion of Fe–Cr and Fe–Cr–Ni alloys in Ar–20CO2 gas at 818 °C , 2013 .

[27]  D. Young,et al.  Mechanism of breakaway oxidation of Fe–Cr and Fe–Cr–Ni alloys in dry and wet carbon dioxide , 2012 .

[28]  M. Anderson,et al.  Corrosion of austenitic alloys in high temperature supercritical carbon dioxide , 2012 .

[29]  Gary E Rochau,et al.  Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle , 2012 .

[30]  Jeong-Ik Lee,et al.  Potential advantages of coupling supercritical CO2 Brayton cycle to water cooled small and medium size reactor , 2012 .

[31]  Thomas M. Conboy,et al.  Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle. , 2012 .

[32]  F. Rouillard,et al.  Corrosion of 9Cr Steel in CO2 at Intermediate Temperature III: Modelling and Simulation of Void-induced Duplex Oxide Growth , 2012, Oxidation of Metals.

[33]  F. Rouillard,et al.  Corrosion of 9Cr Steel in CO2 at Intermediate Temperature I: Mechanism of Void-Induced Duplex Oxide Formation , 2012, Oxidation of Metals.

[34]  M. Aritomi,et al.  Compatibility of FBR structural materials with supercritical carbon dioxide , 2011 .

[35]  T. Sakai,et al.  Damage assessment method of P91 steel welded tube under internal pressure creep based on void growth simulation , 2010 .

[36]  John Hald,et al.  New ECCC assessment of creep rupture strength for steel grade X10CrMoVNb9-1 (Grade 91) , 2010 .

[37]  Tomohiro Furukawa,et al.  Corrosion Behavior of FBR Structural Materials in High Temperature Supercritical Carbon Dioxide , 2010 .

[38]  F. Rizzo,et al.  The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review , 2008 .

[39]  M. Driscoll,et al.  The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles , 2006 .

[40]  John Hald,et al.  Creep strength and ductility of 9 to 12% chromium steels , 2004 .

[41]  R. Molins,et al.  Effect of an applied stress on the growth kinetics of oxide scales formed on Ni-20Cr alloys , 2001 .