A new approach to N-3 functionalized 3,4-dihydropyrimidine-2(1H)-ones with 1,2,4-oxadiazole group as amide isostere via ionic liquid-phase technology

[1]  T. Besson,et al.  Heterocyclic Chemistry Using Microwave‐Assisted Approaches , 2009 .

[2]  J. Bazureau,et al.  Liquid-phase synthesis of polyhydroquinoline using task-specific ionic liquid technology. , 2006, Journal of combinatorial chemistry.

[3]  Yanqing Peng,et al.  Carboxyl-functional ionic liquids as scavengers: case studies on benzyl chloride, amines, and methanesulfonyl chloride. , 2006, Journal of combinatorial chemistry.

[4]  Yanguang Wang,et al.  A novel and efficient ionic liquid supported synthesis of oligosaccharides , 2006 .

[5]  Sang-gi Lee Functionalized imidazolium salts for task-specific ionic liquids and their applications. , 2006, Chemical communications.

[6]  J. Bazureau,et al.  Ionic liquid phase technology supported the three component synthesis of hantzsch 1,4-dihydropyridines and biginelli 3,4-dihydropyrimidin-2(1H)-ones under microwave dielectric heating , 2005 .

[7]  Yanqing Peng,et al.  Amino-functionalized ionic liquid as a nucleophilic scavenger in solution phase combinatorial synthesis. , 2005, Journal of combinatorial chemistry.

[8]  Yanqing Peng,et al.  Microwave-assisted liquid-phase synthesis of methyl 6-amino-5-cyano-4-aryl-2-methyl-4H-pyran-3-carboxylate using functional ionic liquid as soluble support , 2005 .

[9]  T. Chan,et al.  Ionic-liquid-supported peptide synthesis demonstrated by the synthesis of Leu(5)-enkephalin. , 2005, The Journal of organic chemistry.

[10]  H. Pertz,et al.  New Oxadiazole Derivatives Showing partly Antiplatelet, Antithrombotic and Serotonin Antagonistic Properties , 2005, Archiv der Pharmazie.

[11]  D. Sauer,et al.  Rapid and efficient synthesis of 1,2,4-oxadiazoles utilizing polymer-supported reagents under microwave heating. , 2005, Organic letters.

[12]  J. Tierney,et al.  Microwave Assisted Organic Synthesis , 2005 .

[13]  G. Caliendo,et al.  A suitable 1,2,4-oxadiazoles synthesis by microwave irradiation. , 2004, Bioorganic & medicinal chemistry letters.

[14]  J. Bazureau,et al.  Ionic liquid phase organic synthesis (IoLiPOS) methodology applied to the three component preparation of 2-thioxo tetrahydropyrimidin-4-(1H)-ones under microwave dielectric heating , 2004 .

[15]  A. W. Tuin,et al.  Development of a novel ionic support and its application in the ionic liquid phase assisted synthesis of a potent antithrombotic , 2004 .

[16]  S. Chandrasekhar,et al.  Synthesis and preliminary use of novel acrylic ester-derived task-specific ionic liquids , 2004 .

[17]  T. Chan,et al.  Exploration of ionic liquids as soluble supports for organic synthesis. Demonstration with a Suzuki coupling reaction. , 2003, Organic letters.

[18]  S. Handy,et al.  Fructose-derived ionic liquids: recyclable homogeneous supports , 2003 .

[19]  Jean‐François Hernandez,et al.  Synthesis of Various 3-Substituted 1,2,4-Oxadiazole-Containing Chiral β3- and α-Amino Acids from Fmoc-Protected Aspartic Acid , 2003 .

[20]  J. Bazureau,et al.  Efficient combination of task-specific ionic liquid and microwave dielectric heating applied to one-pot three component synthesis of a small library of 4-thiazolidinones , 2003 .

[21]  J. Bazureau,et al.  Ecofriendly Fast Synthesis of Hydrophilic Poly(ethyleneglycol)-Ionic Liquid Matrices for Liquid-Phase Organic Synthesis. , 2002 .

[22]  R. Varma Microwave organic synthesis , 2002 .

[23]  J. Tierney,et al.  Microwave assisted organic synthesis-a review , 2001 .

[24]  J. Bazureau,et al.  Grafted ionic liquid-phase-supported synthesis of small organic molecules , 2001 .

[25]  C. Kappe Biologically active dihydropyrimidones of the Biginelli-type--a literature survey. , 2000, European journal of medicinal chemistry.

[26]  J. Barrow,et al.  In Vitro and in Vivo Evaluation of Dihydropyrimidinone C-5 Amides as Potent and Selective α1A Receptor Antagonists for the Treatment of Benign Prostatic Hyperplasia , 2000 .

[27]  K. Janda,et al.  Soluble polymer-supported organic synthesis. , 2000, Accounts of chemical research.

[28]  L. Terenius,et al.  Design, synthesis, and evaluation of Phe-Gly mimetics: heterocyclic building blocks for pseudopeptides. , 1999, Journal of medicinal chemistry.

[29]  T. J. Nitz,et al.  Oxadiazoles as ester bioisosteric replacements in compounds related to disoxaril. Antirhinovirus activity. , 1994, Journal of medicinal chemistry.

[30]  G. Stemp,et al.  Benzopyran potassium channel activators related to cromakalim - heterocyclic amide replacements at position 4. , 1994 .

[31]  A Hedberg,et al.  Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. , 1991, Journal of medicinal chemistry.

[32]  E. Scriven 4-Dialkylaminopyridines: super acylation and alkylation catalysts , 1983 .

[33]  D. J. Triggle,et al.  New developments in calcium ion channel antagonists , 1983 .

[34]  L. Mathias Esterification and Alkylation Reactions Employing Isoureas , 1979 .

[35]  K. Snader,et al.  Hantzsch-type dihydropyridine hypotensive agents , 1974 .

[36]  F. Eloy,et al.  The Chemistry of Amidoximes and Related Compounds. , 1962 .

[37]  A. Hantzsch Ueber die Synthese pyridinartiger Verbindungen aus Acetessigäther und Aldehydammoniak , 1882 .