Asynchronous space-time domain decomposition method with localized uncertainty quantification

Abstract The computational cost associated with uncertainty quantification of engineering problems featuring localized phenomenon can be reduced by confining the random variability of the model parameters within a region of interest. In this case, a localized treatment of mesh and time resolutions is required to capture the effect of the confined material uncertainty on the global response. We present a computational approach for localized uncertainty quantification with the capability of asynchronous treatment of mesh and time resolutions. In particular, we allow each subdomain to have its local uncertainty representation and the corresponding mesh and time resolutions. As a result, computing resources can be directed toward a small region of interest where a model with high spatial and temporal resolutions is required. To verify the numerical implementation, we consider elastic wave propagation in an axially loaded beam. Moreover, we perform convergence studies with respect to the spatial and temporal discretizations as well as the size of an uncertain subdomain. A projectile impacting a composite sandwich plate is considered as an engineering application for the proposed method.

[1]  Waad Subber,et al.  A domain decomposition method of stochastic PDEs: An iterative solution techniques using a two-level scalable preconditioner , 2014, J. Comput. Phys..

[2]  Waad Subber,et al.  Asynchronous space–time algorithm based on a domain decomposition method for structural dynamics problems on non-matching meshes , 2016 .

[3]  Daniel M. Tartakovsky,et al.  Groundwater flow in heterogeneous composite aquifers , 2002 .

[4]  Roger Ghanem,et al.  Stochastic model reduction for chaos representations , 2007 .

[5]  Howard C. Elman,et al.  ASSESSMENT OF COLLOCATION AND GALERKIN APPROACHES TO LINEAR DIFFUSION EQUATIONS WITH RANDOM DATA , 2011 .

[6]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[7]  Roger Ghanem,et al.  Efficient solution of stochastic systems: Application to the embankment dam problem , 2007 .

[8]  Waad Subber,et al.  Dual-primal domain decomposition method for uncertainty quantification , 2013 .

[9]  Frédéric Magoulès,et al.  Lagrangian formulation of domain decomposition methods: A unified theory , 2006 .

[10]  A. Nouy Recent Developments in Spectral Stochastic Methods for the Numerical Solution of Stochastic Partial Differential Equations , 2009 .

[11]  I. Babuska,et al.  Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation , 2005 .

[12]  P. Gould Introduction to Linear Elasticity , 1983 .

[13]  S. Adhikari A reduced spectral function approach for the stochastic finite element analysis , 2011 .

[14]  Paolo L. Gatti Applied structural and mechanical vibrations : theory and methods , 2014 .

[15]  H. Matthies,et al.  Partitioned treatment of uncertainty in coupled domain problems: A separated representation approach , 2013, 1305.6818.

[16]  Charbel Farhat,et al.  A FETI‐preconditioned conjugate gradient method for large‐scale stochastic finite element problems , 2009 .

[17]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[18]  Howard C. Elman,et al.  Block-diagonal preconditioning for spectral stochastic finite-element systems , 2008 .

[19]  Yalchin Efendiev,et al.  Preconditioning Markov Chain Monte Carlo Simulations Using Coarse-Scale Models , 2006, SIAM J. Sci. Comput..

[20]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[21]  Stefan Vandewalle,et al.  Algebraic multigrid for stationary and time‐dependent partial differential equations with stochastic coefficients , 2008, Numer. Linear Algebra Appl..

[22]  Debraj Ghosh,et al.  Addressing the curse of dimensionality in SSFEM using the dependence of eigenvalues in KL expansion on domain size , 2016 .

[23]  Régis Cottereau,et al.  A stochastic-deterministic coupling method for continuum mechanics , 2011 .

[24]  Roger G. Ghanem,et al.  Hierarchical Schur complement preconditioner for the stochastic Galerkin finite element methods , 2012, Numer. Linear Algebra Appl..

[25]  Simon R. Phillpot,et al.  Uncertainty Quantification in Multiscale Simulation of Materials: A Prospective , 2013 .

[26]  S. Adhikari,et al.  Transient Response of Structural Dynamic Systems with Parametric Uncertainty , 2014 .

[27]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005 .

[28]  Matthew Mosby,et al.  Computational homogenization at extreme scales , 2016 .

[29]  Arun Prakash,et al.  Computationally efficient multi-time-step method for partitioned time integration of highly nonlinear structural dynamics , 2014 .

[30]  George Em Karniadakis,et al.  Generalized polynomial chaos and random oscillators , 2004 .

[31]  Manolis Papadrakakis,et al.  A new perspective on the solution of uncertainty quantification and reliability analysis of large-scale problems , 2014 .

[32]  Roger Ghanem,et al.  Numerical solution of spectral stochastic finite element systems , 1996 .

[33]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[34]  A. Keane,et al.  Stochastic Reduced Basis Methods , 2002 .

[35]  A. Sarkar,et al.  Domain decomposition of stochastic PDEs: Theoretical formulations , 2009 .

[36]  Roger Ghanem,et al.  Uncertainty Quantification in Computational and Prediction Science , 2009 .

[37]  Habib N. Najm,et al.  A multigrid solver for two-dimensional stochastic diffusion equations , 2003 .

[38]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[39]  Sébastien Loisel,et al.  Schwarz preconditioners for stochastic elliptic PDEs , 2014 .

[40]  Marc G. D. Geers,et al.  A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials , 2017, J. Comput. Phys..

[41]  Daniel M. Tartakovsky,et al.  Mean Flow in composite porous media , 2000 .

[42]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[43]  Ivana Pultarová,et al.  Hierarchical preconditioning for the stochastic Galerkin method: Upper bounds to the strengthened CBS constants , 2016, Comput. Math. Appl..

[44]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..