Mapping Non-conventional Extensions of Genetic Programming

Conventional genetic programming research excludes memory and iteration. We have begun an extensive analysis of the space through which GP or other unconventional AI approaches search and extend it to consider explicit program stop instructions (T8) and any time models (T7). We report halting probability, run time and functionality (including entropy of binary functions) of both halting and anytime programs. Turing complete program fitness landscapes, even with halt, scale poorly.

[1]  Riccardo Poli,et al.  Mapping non-conventional extensions of genetic programming , 2006, Natural Computing.

[2]  Riccardo Poli,et al.  Efficient Markov Chain Model of Machine Code Program Execution and Halting , 2007 .

[3]  Jason M. Daida,et al.  Analysis of single-node (building) blocks in genetic programming , 1999 .

[4]  William B. Langdon,et al.  Convergence Rates For The Distribution Of Program Outputs , 2002, GECCO.

[5]  William A. Greene Schema Disruption in Chromosomes That Are Structured as Binary Trees , 2004, GECCO.

[6]  William B. Langdon,et al.  How Many Good Programs are There? How Long are They? , 2002, FOGA.

[7]  Wolfgang Banzhaf,et al.  Genetic Programming: An Introduction , 1997 .

[8]  Maarten Keijzer,et al.  The Push3 execution stack and the evolution of control , 2005, GECCO '05.

[9]  Riccardo Poli,et al.  Foundations of Genetic Programming , 1999, Springer Berlin Heidelberg.

[10]  William B. Langdon,et al.  Convergence of Program Fitness Landscapes , 2003, GECCO.

[11]  Riccardo Poli,et al.  The Halting Probability in Von Neumann Architectures , 2006, EuroGP.

[12]  Claude E. Shannon,et al.  The Mathematical Theory of Communication , 1950 .

[13]  G. Chaitin An algebraic equation for the halting probability , 1988 .

[14]  Cristian S. Calude,et al.  Computing a Glimpse of Randomness , 2002, Exp. Math..

[15]  David E. Goldberg,et al.  BUILDING-BLOCK SUPPLY IN GENETIC PROGRAMMING , 2003 .

[16]  Peter Nordin,et al.  Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications , 1998 .

[17]  Justinian Rosca,et al.  A PROBABILISTIC MODEL OF SIZE DRIFT , 2003 .

[18]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[19]  Sidney R. Maxwell,et al.  Experiments with a coroutine execution model for genetic programming , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[20]  Riccardo Poli,et al.  On Turing complete T7 and MISC F--4 program fitnes landscapes , 2005, Theory of Evolutionary Algorithms.

[21]  Riccardo Poli,et al.  Using Schema Theory To Explore Interactions Of Multiple Operators , 2002, GECCO.