Effects of transition metal ion dopants on the performance of Ca2.9Bi0.1Co4O9−δ cathode

[1]  T. He,et al.  Assessment of LnBaCo1.6Ni0.4O5+δ (Ln = Pr, Nd, and Sm) double-perovskites as cathodes for intermediate-temperature solid-oxide fuel cells , 2013 .

[2]  Chunchang Wang,et al.  Cobalt-free perovskite Ba0.5Sr0.5Fe0.9Nb0.1O3−δ as a cathode material for intermediate temperature solid oxide fuel cells , 2012 .

[3]  P. K. Sinha,et al.  Synthesis and characterization of GdCoO3 as a potential SOFC cathode material , 2012 .

[4]  Yaohui Zhang,et al.  Performance evaluation of an anode-supported solid oxide fuel cell with Ce0.8Sm0.2O1.9 impregnated GdBaCo2O5+δ cathode , 2012 .

[5]  S. Feng,et al.  Electrochemical performance of Nd1.93Sr0.07CuO4 nanofiber as cathode material for SOFC , 2012 .

[6]  J. Chung,et al.  Preparation and evaluation of Ca3−xBixCo4O9−δ (0< x ≤ 0.5) as novel cathodes for intermediate temperature-solid oxide fuel cells , 2012 .

[7]  J. Chung,et al.  Effect of Fe doping on PrBaCo2O5 + δ as cathode for intermediate-temperature solid oxide fuel cells , 2012 .

[8]  Z. Yaakob,et al.  Synthesis and characterization of cobalt-free Ba0.5Sr0.5Fe0.8Cu0.2O3−δ perovskite oxide cathode nanofibers , 2011 .

[9]  O. Mentré,et al.  Optimisation of the Solid Oxide Fuel Cell (SOFC) cathode material Ca3Co4O9−δ , 2011 .

[10]  S. Bhoga,et al.  Electrochemical performance of microwave synthesized Nd1.8Ce0.2CuO4±δ cathode for intermediate temperature solid oxide fuel cell applications , 2011 .

[11]  A. Manthiram,et al.  Effects of Ga substitution on the high temperature properties of the n = 3 Ruddlesden Popper system LaSr3Fe1.5 − x/2Co1.5 − x/2GaxO10 − δ (0 ≤ x ≤ 0.8) , 2011 .

[12]  Guntae Kim,et al.  Electrochemical behavior of Ba0.5Sr0.5Co0.2−xZnxFe0.8O3−δ (x = 0–0.2) perovskite oxides for the cathode of solid oxide fuel cells , 2011 .

[13]  Tak-Hyoung Lim,et al.  Induction brazing for gas sealing of anode-supported tubular solid oxide fuel cells using the nickel based brazing alloy modified by TiH2 , 2011 .

[14]  W. Su,et al.  Strongly Correlated Properties and Enhanced Thermoelectric Response in Ca3Co4−xMxO9 (M = Fe, Mn, and Cu)† , 2010 .

[15]  O. Mentré,et al.  Ca3Co4O9−δ: A Thermoelectric Material for SOFC Cathode , 2009 .

[16]  H. Sun,et al.  TEXTURED STRUCTURE AND ANISOTROPIC THERMOELECTRIC PROPERTIES OF Ca2.7Bi0.3Co4O9 OXIDE PREPARED BY CONVENTIONAL SOLID-STATE REACTION , 2009 .

[17]  A. Manthiram,et al.  Effect of cation doping on the physical properties and electrochemical performance of Nd0.6Sr0.4Co0.8M0.2O3−δ (M = Ti, Cr, Mn, Fe, Co, and Cu) cathodes , 2007 .

[18]  Yuanhua Lin,et al.  High-temperature electrical transport and thermoelectric power of partially substituted Ca3Co4O9-based ceramics , 2007 .

[19]  H. Tuller,et al.  Electrical and electrochemical characterization of microstructured thin film La1−xSrxCoO3 electrodes , 2006 .

[20]  Q. Yao,et al.  Effects of partial substitution of transition metals for cobalt on the high-temperature thermoelectric properties of Ca3Co4O9+δ , 2005 .

[21]  V. Petříček,et al.  Contribution of powder diffraction for structure refinements of aperiodic misfit cobalt oxides , 2004 .

[22]  M. Shikano,et al.  Contribution of electronic structure to the large thermoelectric power in layered cobalt oxides , 2004 .

[23]  M. Shikano,et al.  Effects of KCl Addition on the K2CO3 Flux Growth of Ca3Co4O9 Crystals for a Thermoelectric Device , 2003 .

[24]  Jürgen Fleig,et al.  The grain boundary impedance of random microstructures: numerical simulations and implications for the analysis of experimental data , 2002 .

[25]  R. Asahi,et al.  Electronic structure of misfit-layered calcium cobaltite , 2002, Twenty-First International Conference on Thermoelectrics, 2002. Proceedings ICT '02..

[26]  M. Shikano,et al.  Thermoelectric properties of the Bi- and Na-substituted Ca3Co4O9 system , 2002 .

[27]  M. Shikano,et al.  High temperature thermoelectric properties of (Ca, Ce)4Mn3O10 , 2002 .

[28]  Hiroyuki Yamada,et al.  Synthesis and Thermoelectric Properties of the New Oxide Materials Ca3-xBixCo4O9+δ (0.0 < x < 0.75) , 2000 .

[29]  M. Hervieu,et al.  Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca 3 Co 4 O 9 , 2000 .

[30]  M. M. Nasrallah,et al.  Structure and electrical properties of La1 − xSrxCo1 − yFeyO3. Part 2. The system La1 − xSrxCo0.2Fe0.8O3 , 1995 .

[31]  Harlan U. Anderson,et al.  Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3 , 1995 .

[32]  Norio Miura,et al.  Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability , 1991 .

[33]  D. Sinclair,et al.  Electroceramics: Characterization by Impedance Spectroscopy , 1990 .

[34]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .