A Treatise on Quantum Clifford Algebras

Quantum Clifford Algebras (QCA), i.e. Clifford Hopf gebras based on bilinear forms of arbitrary symmetry, are treated in a broad sense. Five alternative constructions of QCAs are exhibited. Grade free Hopf gebraic product formulas are derived for meet and join of Grassmann-Cayley algebras including co-meet and co-join for Grassmann-Cayley co-gebras which are very efficient and may be used in Robotics, left and right contractions, left and right co-contractions, Clifford and co-Clifford products, etc. The Chevalley deformation, using a Clifford map, arises as a special case. We discuss Hopf algebra versus Hopf gebra, the latter emerging naturally from a bi-convolution. Antipode and crossing are consequences of the product and co-product structure tensors and not subjectable to a choice. A frequently used Kuperberg lemma is revisited necessitating the definition of non-local products and interacting Hopf gebras which are generically non-perturbative. A `spinorial' generalization of the antipode is given. The non-existence of non-trivial integrals in low-dimensional Clifford co-gebras is shown. Generalized cliffordization is discussed which is based on non-exponentially generated bilinear forms in general resulting in non unital, non-associative products. Reasonable assumptions lead to bilinear forms based on 2-cocycles. Cliffordization is used to derive time- and normal-ordered generating functionals for the Schwinger-Dyson hierarchies of non-linear spinor field theory and spinor electrodynamics. The relation between the vacuum structure, the operator ordering, and the Hopf gebraic counit is discussed. QCAs are proposed as the natural language for (fermionic) quantum field theory.

[1]  Quantum Differential Forms , 1998, quant-ph/9807092.

[2]  HECKE ALGEBRA REPRESENTATIONS WITHIN CLIFFORD GEOMETRIC ALGEBRAS OF MULTIVECTORS , 1997, q-alg/9710020.

[4]  R. Penrose,et al.  Book-Review - Spinors and Spacetime - VOL.2 - Spinor and Twistor Methods in Spacetime Geometry , 1986 .

[5]  J. Pillis Grassmann algebras as Hilbert space , 1968 .

[6]  C. Brouder,et al.  On the trees of quantum fields , 1999 .

[7]  J. Chisholm,et al.  5th International Conference on “Clifford Algebras and Their Applications in Mathematical Physics” , 1986 .

[8]  Dirac Theory from a Field Theoretic Point of View , 1996, hep-th/9606048.

[9]  Greg Kuperberg INVOLUTORY HOPF ALGEBRAS AND 3-MANIFOLD INVARIANTS , 1990 .

[10]  Z. Oziewicz From Grassmann to Clifford , 1986 .

[11]  V. Lyubashenko Modular transformations for tensor categories , 1995 .

[12]  Walter. Benz Vorlesungen über Geometrie der Algebren : Geometrien von Möbius, Laguerre-Lie, Minkowski in einheitlicher und grundlagengeometrischer Behandlung , 1973 .

[13]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[14]  D. Hestenes,et al.  Projective geometry with Clifford algebra , 1991 .

[15]  S. Majid Foundations of Quantum Group Theory , 1995 .

[16]  Alain Connes,et al.  Renormalization in Quantum Field Theory and the Riemann–Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem , 2000 .

[17]  Quantum algebras. - I. Basic algebraic and topological structures , 1993 .

[18]  H. Whitney,et al.  Sphere-Spaces. , 1935, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A quantum field algebra , 2002, math-ph/0201033.

[20]  S. E. Payne,et al.  Orthogonal and symplectic clifford algebras (spinor structures) , 1991 .

[21]  Clifford Hopf gebra for two-dimensional space , 2000, math/0011263.

[22]  Gian-Carlo Rota,et al.  Invariant theory and superalgebras , 1987 .

[23]  V. Kisil Polynomial Sequences of Binomial Type and Path Integrals , 1998, math/9808040.

[24]  William R. Schmitt,et al.  Antipodes and incidence coalgebras , 1987, J. Comb. Theory, Ser. A.

[25]  Z. Oziewicz Clifford hopf-gebra and bi-universal hopf-gebra , 1997, q-alg/9709016.

[26]  Noncommutative renormalization for massless QED , 2000, hep-th/0011161.

[27]  Louis H. Kauffman Virtual Knot Theory , 1999, Eur. J. Comb..

[28]  A. Borel Sur La Cohomologie des Espaces Fibres Principaux et des Espaces Homogenes de Groupes de Lie Compacts , 1953 .

[29]  H. Hopf,et al.  Über die Topologie der Gruppen-Mannigfaltigkeiten und ihrer Verallgemeinerungen , 1941 .

[30]  John Milnor,et al.  On the Structure of Hopf Algebras , 1965 .

[31]  B. Eckmann Gruppentheoretischer Beweis des Satzes von Hurwitz-Radon über die Komposition quadratischer Formen , 1942 .

[32]  H. Epstein,et al.  The Role of locality in perturbation theory , 1973 .

[33]  D. Hestenes,et al.  Clifford Algebra to Geometric Calculus , 1984 .

[34]  Involutory Hopf algebras and 3-manifold invariants , 1996, q-alg/9712047.

[35]  R. Penrose,et al.  Two-spinor calculus and relativistic fields , 1984 .

[36]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[37]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[38]  Alain Connes,et al.  Renormalization in Quantum Field Theory and the Riemann--Hilbert Problem II: The β-Function, Diffeomorphisms and the Renormalization Group , 2001 .

[39]  Positronium as an example of algebraic composite calculations , 1995, hep-th/9510193.

[40]  G. Rota,et al.  The invariant theory of binary forms , 1984 .

[41]  Francis J. Wright Computing with Maple , 2001 .

[42]  S. Woronowicz,et al.  Compact matrix pseudogroups , 1987 .

[43]  G. Murphy C*-Algebras and Operator Theory , 1990 .

[44]  A. Hurwitz,et al.  Über die Komposition der quadratischen Formen , 1922 .

[45]  S. Woronowicz,et al.  Differential calculus on compact matrix pseudogroups (quantum groups) , 1989 .

[46]  A. Connes,et al.  Lessons from Quantum Field Theory , 1999 .

[47]  Gian-Carlo Rota,et al.  On the Foundations of Combinatorial Theory: IX Combinatorial Methods in Invariant Theory , 1974 .

[48]  A convergence criterion for a class of integration methods , 1972 .

[49]  Pierre Cartier,et al.  The algebraic theory of spinors and Clifford algebras , 1996 .

[50]  Editors , 1986, Brain Research Bulletin.

[51]  B. Fauser Clifford geometric parameterization of inequivalent vacua , 1997, hep-th/9710047.

[52]  P. Lounesto Clifford Algebras and Spinors , 1997 .

[53]  Oliver Conradt,et al.  Mechanics in space and counterspace , 2000 .

[54]  J. Ryan,et al.  Clifford Algebras and their Applications in Mathematical Physics: Volume 2: Clifford Analysis , 2000 .

[55]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[56]  Gian-Carlo Rota,et al.  On the Exterior Calculus of Invariant Theory , 1985 .

[57]  Gert Schubring Hermann Günther Graßmann (1809-1877): Visionary Mathematician, Scientist and Neohumanist Scholar : Papers from a Sesquicentennial Conference , 1996 .

[58]  Composite Particle Theory in Quantum Electrodynamics , 1993 .

[59]  Friedrich Bachmann,et al.  Aufbau der Geometrie aus dem Spiegelungsbegriff , 1959 .

[60]  Robin Tucker,et al.  An Introduction to Spinors and Geometry with Applications in Physics , 1988 .

[61]  Christian Brouder,et al.  Runge–Kutta methods and renormalization , 2000 .

[62]  Dirk Kreimer,et al.  On the Hopf algebra structure of perturbative quantum field theories , 1997 .

[63]  D. Kreimer Knots and Feynman Diagrams , 2000 .

[64]  VERTEX FUNCTIONS AND GENERALIZED NORMAL-ORDERING BY TRIPLE SYSTEMS IN NON-LINEAR SPINOR FIELD MODELS , 1996, hep-th/9611069.

[65]  G. C. Rota,et al.  Plethystic Hopf algebras. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Green's Functions in Quantum Electrodynamics , 1954 .

[67]  R. H. Crowell,et al.  Presentation of Groups , 1963 .

[68]  G. Pinter Finite renormalizations in the Epstein Glaser framework and renormalization of the S‐matrix of Φ4‐theory , 2001, Annalen der Physik.

[69]  V. Lyubashenko Tangles and Hopf algebras in braided categories , 1995 .

[70]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[71]  R. Penrose,et al.  Spinor and twistor methods in space-time geometry , 1986 .

[72]  A. Crumeyrolle,et al.  Orthogonal and Symplectic Cli ord Algebras , 1990 .

[73]  David N. Yettera Quantum groups and representations of monoidal categories , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[74]  On an easy transition from operator dynamics to generating functionals by Clifford algebras , 1997, hep-th/9710186.

[75]  Eduardo R. Caianiello,et al.  Combinatorics and renormalization in quantum field theory , 1973 .

[76]  David Hestenes,et al.  Space-time algebra , 1966 .

[77]  Československá akademie věd Czechoslovak journal of physics = Чехословацкий физический журнал , 1952 .

[78]  E. Folke Bolinder,et al.  Clifford Numbers and Spinors , 1993 .

[79]  Oliver Conradt The Principle of Duality in Clifford Algebra and Projective Geometry , 2000 .

[80]  R. Abłamowicz,et al.  On the Decomposition of Clifford Algebras of Arbitrary Bilinear Form , 1999, math/9911180.

[81]  J. Radon Lineare scharen orthogonaler matrizen , 1922 .

[82]  Oconnor,et al.  The MacTutor History of Mathematics Archive , 2001 .

[83]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[84]  Vertex normal ordering as a consequence of nonsymmetric bilinear forms in Clifford algebras , 1995, hep-th/9504055.

[85]  Federigo Enriques,et al.  Die grundlagen der Geometrie , 1923 .

[86]  Z. Oziewicz Guest Editor's Note: Clifford Algebras and Their Applications , 2001 .

[87]  Andrzej Trautman,et al.  The Spinorial Chessboard , 1988 .

[88]  B. L. Waerden,et al.  A history of algebra : from Al-Khwārizmī to Emmy Noether , 1985 .

[89]  Michael J. Crowe,et al.  A Mathematical System. (Book Reviews: A History of Vector Analysis. The Evolution of the Idea of a Vectorial System) , 2015 .

[90]  Bertfried Fauser On the Hopf algebraic origin of Wick normal ordering , 2001 .

[91]  D. Torr,et al.  Quantum Clifford algebra from classical differential geometry , 2002 .