A Treatise on Quantum Clifford Algebras
暂无分享,去创建一个
[1] Quantum Differential Forms , 1998, quant-ph/9807092.
[2] HECKE ALGEBRA REPRESENTATIONS WITHIN CLIFFORD GEOMETRIC ALGEBRAS OF MULTIVECTORS , 1997, q-alg/9710020.
[4] R. Penrose,et al. Book-Review - Spinors and Spacetime - VOL.2 - Spinor and Twistor Methods in Spacetime Geometry , 1986 .
[5] J. Pillis. Grassmann algebras as Hilbert space , 1968 .
[6] C. Brouder,et al. On the trees of quantum fields , 1999 .
[7] J. Chisholm,et al. 5th International Conference on “Clifford Algebras and Their Applications in Mathematical Physics” , 1986 .
[8] Dirac Theory from a Field Theoretic Point of View , 1996, hep-th/9606048.
[9] Greg Kuperberg. INVOLUTORY HOPF ALGEBRAS AND 3-MANIFOLD INVARIANTS , 1990 .
[10] Z. Oziewicz. From Grassmann to Clifford , 1986 .
[11] V. Lyubashenko. Modular transformations for tensor categories , 1995 .
[12] Walter. Benz. Vorlesungen über Geometrie der Algebren : Geometrien von Möbius, Laguerre-Lie, Minkowski in einheitlicher und grundlagengeometrischer Behandlung , 1973 .
[13] Nicolai Reshetikhin,et al. Quantum Groups , 1993 .
[14] D. Hestenes,et al. Projective geometry with Clifford algebra , 1991 .
[15] S. Majid. Foundations of Quantum Group Theory , 1995 .
[16] Alain Connes,et al. Renormalization in Quantum Field Theory and the Riemann–Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem , 2000 .
[17] Quantum algebras. - I. Basic algebraic and topological structures , 1993 .
[18] H. Whitney,et al. Sphere-Spaces. , 1935, Proceedings of the National Academy of Sciences of the United States of America.
[19] A quantum field algebra , 2002, math-ph/0201033.
[20] S. E. Payne,et al. Orthogonal and symplectic clifford algebras (spinor structures) , 1991 .
[21] Clifford Hopf gebra for two-dimensional space , 2000, math/0011263.
[22] Gian-Carlo Rota,et al. Invariant theory and superalgebras , 1987 .
[23] V. Kisil. Polynomial Sequences of Binomial Type and Path Integrals , 1998, math/9808040.
[24] William R. Schmitt,et al. Antipodes and incidence coalgebras , 1987, J. Comb. Theory, Ser. A.
[25] Z. Oziewicz. Clifford hopf-gebra and bi-universal hopf-gebra , 1997, q-alg/9709016.
[26] Noncommutative renormalization for massless QED , 2000, hep-th/0011161.
[27] Louis H. Kauffman. Virtual Knot Theory , 1999, Eur. J. Comb..
[28] A. Borel. Sur La Cohomologie des Espaces Fibres Principaux et des Espaces Homogenes de Groupes de Lie Compacts , 1953 .
[29] H. Hopf,et al. Über die Topologie der Gruppen-Mannigfaltigkeiten und ihrer Verallgemeinerungen , 1941 .
[30] John Milnor,et al. On the Structure of Hopf Algebras , 1965 .
[31] B. Eckmann. Gruppentheoretischer Beweis des Satzes von Hurwitz-Radon über die Komposition quadratischer Formen , 1942 .
[32] H. Epstein,et al. The Role of locality in perturbation theory , 1973 .
[33] D. Hestenes,et al. Clifford Algebra to Geometric Calculus , 1984 .
[34] Involutory Hopf algebras and 3-manifold invariants , 1996, q-alg/9712047.
[35] R. Penrose,et al. Two-spinor calculus and relativistic fields , 1984 .
[36] N. Reshetikhin,et al. Quantum Groups , 1993, hep-th/9311069.
[37] O. Bratteli. Operator Algebras And Quantum Statistical Mechanics , 1979 .
[38] Alain Connes,et al. Renormalization in Quantum Field Theory and the Riemann--Hilbert Problem II: The β-Function, Diffeomorphisms and the Renormalization Group , 2001 .
[39] Positronium as an example of algebraic composite calculations , 1995, hep-th/9510193.
[40] G. Rota,et al. The invariant theory of binary forms , 1984 .
[41] Francis J. Wright. Computing with Maple , 2001 .
[42] S. Woronowicz,et al. Compact matrix pseudogroups , 1987 .
[43] G. Murphy. C*-Algebras and Operator Theory , 1990 .
[44] A. Hurwitz,et al. Über die Komposition der quadratischen Formen , 1922 .
[45] S. Woronowicz,et al. Differential calculus on compact matrix pseudogroups (quantum groups) , 1989 .
[46] A. Connes,et al. Lessons from Quantum Field Theory , 1999 .
[47] Gian-Carlo Rota,et al. On the Foundations of Combinatorial Theory: IX Combinatorial Methods in Invariant Theory , 1974 .
[48] A convergence criterion for a class of integration methods , 1972 .
[49] Pierre Cartier,et al. The algebraic theory of spinors and Clifford algebras , 1996 .
[50] Editors , 1986, Brain Research Bulletin.
[51] B. Fauser. Clifford geometric parameterization of inequivalent vacua , 1997, hep-th/9710047.
[52] P. Lounesto. Clifford Algebras and Spinors , 1997 .
[53] Oliver Conradt,et al. Mechanics in space and counterspace , 2000 .
[54] J. Ryan,et al. Clifford Algebras and their Applications in Mathematical Physics: Volume 2: Clifford Analysis , 2000 .
[55] Edward Witten,et al. Quantum field theory and the Jones polynomial , 1989 .
[56] Gian-Carlo Rota,et al. On the Exterior Calculus of Invariant Theory , 1985 .
[57] Gert Schubring. Hermann Günther Graßmann (1809-1877): Visionary Mathematician, Scientist and Neohumanist Scholar : Papers from a Sesquicentennial Conference , 1996 .
[58] Composite Particle Theory in Quantum Electrodynamics , 1993 .
[59] Friedrich Bachmann,et al. Aufbau der Geometrie aus dem Spiegelungsbegriff , 1959 .
[60] Robin Tucker,et al. An Introduction to Spinors and Geometry with Applications in Physics , 1988 .
[61] Christian Brouder,et al. Runge–Kutta methods and renormalization , 2000 .
[62] Dirk Kreimer,et al. On the Hopf algebra structure of perturbative quantum field theories , 1997 .
[63] D. Kreimer. Knots and Feynman Diagrams , 2000 .
[64] VERTEX FUNCTIONS AND GENERALIZED NORMAL-ORDERING BY TRIPLE SYSTEMS IN NON-LINEAR SPINOR FIELD MODELS , 1996, hep-th/9611069.
[65] G. C. Rota,et al. Plethystic Hopf algebras. , 1994, Proceedings of the National Academy of Sciences of the United States of America.
[66] Green's Functions in Quantum Electrodynamics , 1954 .
[67] R. H. Crowell,et al. Presentation of Groups , 1963 .
[68] G. Pinter. Finite renormalizations in the Epstein Glaser framework and renormalization of the S‐matrix of Φ4‐theory , 2001, Annalen der Physik.
[69] V. Lyubashenko. Tangles and Hopf algebras in braided categories , 1995 .
[70] R. Baxter. Exactly solved models in statistical mechanics , 1982 .
[71] R. Penrose,et al. Spinor and twistor methods in space-time geometry , 1986 .
[72] A. Crumeyrolle,et al. Orthogonal and Symplectic Cli ord Algebras , 1990 .
[73] David N. Yettera. Quantum groups and representations of monoidal categories , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.
[74] On an easy transition from operator dynamics to generating functionals by Clifford algebras , 1997, hep-th/9710186.
[75] Eduardo R. Caianiello,et al. Combinatorics and renormalization in quantum field theory , 1973 .
[76] David Hestenes,et al. Space-time algebra , 1966 .
[77] Československá akademie věd. Czechoslovak journal of physics = Чехословацкий физический журнал , 1952 .
[78] E. Folke Bolinder,et al. Clifford Numbers and Spinors , 1993 .
[79] Oliver Conradt. The Principle of Duality in Clifford Algebra and Projective Geometry , 2000 .
[80] R. Abłamowicz,et al. On the Decomposition of Clifford Algebras of Arbitrary Bilinear Form , 1999, math/9911180.
[81] J. Radon. Lineare scharen orthogonaler matrizen , 1922 .
[82] Oconnor,et al. The MacTutor History of Mathematics Archive , 2001 .
[83] G. M. Kelly,et al. Coherence for compact closed categories , 1980 .
[84] Vertex normal ordering as a consequence of nonsymmetric bilinear forms in Clifford algebras , 1995, hep-th/9504055.
[85] Federigo Enriques,et al. Die grundlagen der Geometrie , 1923 .
[86] Z. Oziewicz. Guest Editor's Note: Clifford Algebras and Their Applications , 2001 .
[87] Andrzej Trautman,et al. The Spinorial Chessboard , 1988 .
[88] B. L. Waerden,et al. A history of algebra : from Al-Khwārizmī to Emmy Noether , 1985 .
[89] Michael J. Crowe,et al. A Mathematical System. (Book Reviews: A History of Vector Analysis. The Evolution of the Idea of a Vectorial System) , 2015 .
[90] Bertfried Fauser. On the Hopf algebraic origin of Wick normal ordering , 2001 .
[91] D. Torr,et al. Quantum Clifford algebra from classical differential geometry , 2002 .