Microfluidic preparation of [18F]FE@SUPPY and [18F]FE@SUPPY:2--comparison with conventional radiosyntheses.

[1]  C. Manera,et al.  Microfluidic approach for fast labeling optimization and dose-on-demand implementation. , 2010, Nuclear medicine and biology.

[2]  Shuiyu Lu,et al.  Fast and high-yield microreactor syntheses of ortho-substituted [(18)F]fluoroarenes from reactions of [(18)F]fluoride ion with diaryliodonium salts. , 2010, The Journal of organic chemistry.

[3]  L. Nics,et al.  [18F]FE@SUPPY and [18F]FE@SUPPY:2--metabolic considerations. , 2010, Nuclear medicine and biology.

[4]  L. Nics,et al.  Radiosynthesis of a novel potential adenosine A3 receptor ligand, 5-ethyl 2,4-diethyl-3-((2-[18F]fluoroethyl)sulfanylcarbonyl)-6-phenylpyridine-5-carboxylate ([18F]FE@SUPPY:2) , 2009 .

[5]  Alessandro Palmieri,et al.  A microfluidic flow chemistry platform for organic synthesis: the Hofmann rearrangement , 2009 .

[6]  Arkadij M Elizarov,et al.  Microreactors for radiopharmaceutical synthesis. , 2009, Lab on a chip.

[7]  L. Nics,et al.  Automatisation and First Evaluation of [18F]FE@SUPPY:2, an AlternativePET-Tracer for the Adenosine A3 Receptor: A Comparison with[18F]FE@SUPPY , 2009 .

[8]  Shuiyu Lu,et al.  Single-step high-yield radiosynthesis and evaluation of a sensitive 18F-labeled ligand for imaging brain peripheral benzodiazepine receptors with PET. , 2009, Journal of medicinal chemistry.

[9]  Jun-ichi Yoshida,et al.  Flash chemistry: fast chemical synthesis by using microreactors. , 2008, Chemistry.

[10]  W. Wadsak,et al.  Synthesis of in vivo Metabolites of the New Adenosine A3 Receptor PET-Radiotracer [18F]FE@SUPPY , 2008 .

[11]  David J. Yang,et al.  PET Chemistry: The Driving Force in Molecular Imaging , 2007, Journal of Nuclear Medicine.

[12]  C. Wiles,et al.  Microreactors: A New Tool for the Synthetic Chemist , 2007 .

[13]  Sajinder K. Luthra,et al.  Automated PET radiosyntheses using microfluidic devices , 2007 .

[14]  Paul Watts,et al.  Micro reactors: a new tool for the synthetic chemist. , 2007, Organic & biomolecular chemistry.

[15]  W. Perrie,et al.  Microfluidic reactor for the radiosynthesis of PET radiotracers. , 2006, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[16]  C. Prenant,et al.  Microfluidic technology for PET radiochemistry. , 2006, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[17]  S. Quake,et al.  Multistep Synthesis of a Radiolabeled Imaging Probe Using Integrated Microfluidics , 2005, Science.

[18]  Paul Watts,et al.  Syntheses of 11C- and 18F-labeled carboxylic esters within a hydrodynamically-driven micro-reactor. , 2004, Lab on a chip.

[19]  S. Haswell,et al.  Organic synthesis in micro reactors. , 2004, Current topics in medicinal chemistry.

[20]  Paul Watts,et al.  Continuous flow reactors for drug discovery. , 2003, Drug discovery today.

[21]  Paul Watts,et al.  Microfluidic combinatorial chemistry. , 2003, Current opinion in chemical biology.

[22]  S. Dewitt,et al.  Micro reactors for chemical synthesis , 1999 .

[23]  G. Janz,et al.  The Reaction of Cyanogen and Related Nitriles with 1,3-Dienes. VII. Acetonitrile , 1954 .

[24]  Shuiyu Lu,et al.  Synthesis of [F]fallypride in a micro-reactor: rapid optimization and multiple-production in small doses for micro-PET studies. , 2009, Current radiopharmaceuticals.

[25]  W. Wadsak,et al.  Preparation and first evaluation of [(18)F]FE@SUPPY: a new PET tracer for the adenosine A(3) receptor. , 2008, Nuclear medicine and biology.

[26]  W. Wadsak,et al.  Radiosynthesis of the adenosine A3 receptor ligand 5-(2-[18F]fluoroethyl) 2,4-diethyl-3-(ethylsulfanylcarbonyl)- 6-phenylpyridine-5-carboxylate ([18F]FE@SUPPY) , 2008 .

[27]  V. Pike,et al.  Micro-reactors for PET tracer labeling. , 2007, Ernst Schering Research Foundation workshop.