Stereo disparity and L/sup 1/ minimization

In this note, we employ an L/sup 1/ PDE approach for stereo disparity. This approach has the nice feature of preserving edges in the computation. Our numerical method is based on the techniques for the analysis of curves evolving according to functions of curvature.

[1]  L. Rudin,et al.  Feature-oriented image enhancement using shock filters , 1990 .

[2]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[3]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[4]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[5]  J P Frisby,et al.  PMF: A Stereo Correspondence Algorithm Using a Disparity Gradient Limit , 1985, Perception.

[6]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[7]  Gary J. Balas,et al.  Optical flow: a curve evolution approach , 1996, IEEE Trans. Image Process..

[8]  B. Julesz,et al.  Modifications of the Classical Notion of Panum's Fusional Area , 1980, Perception.

[9]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[10]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[11]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[12]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[13]  Fadil Santosa,et al.  Recovery of Blocky Images from Noisy and Blurred Data , 1996, SIAM J. Appl. Math..

[14]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[15]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .