Sensitivity of Simulated Climate to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere Model

Abstract The most recent version of the Max Planck Institute for Meteorology atmospheric general circulation model, ECHAM5, is used to study the impact of changes in horizontal and vertical resolution on seasonal mean climate. In a series of Atmospheric Model Intercomparison Project (AMIP)-style experiments with resolutions ranging between T21L19 and T159L31, the systematic errors and convergence properties are assessed for two vertical resolutions. At low vertical resolution (L19) there is no evidence for convergence to a more realistic climate state for horizontal resolutions higher than T42. At higher vertical resolution (L31), on the other hand, the root-mean-square errors decrease monotonically with increasing horizontal resolution. Furthermore, except for T42, the L31 versions are superior to their L19 counterparts, and the improvements become more evident at increasingly higher horizontal resolutions. This applies, in particular, to the zonal mean climate state and to the stationary wave patterns i...

[1]  Byron A. Boville,et al.  Sensitivity of Simulated Climate to Model Resolution , 1991 .

[2]  Erich Roeckner,et al.  Evaluation of the hydrological cycle in the ECHAM5 model , 2006 .

[3]  C. O. Hines,et al.  Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation , 1997 .

[4]  P. Bretagnon,et al.  Planetary Theories in rectangular and spherical variables: VSOP87 solution. , 1988 .

[5]  Luca Bonaventura,et al.  The atmospheric general circulation model ECHAM 5. PART I: Model description , 2003 .

[6]  F. X. Kneizys,et al.  Line shape and the water vapor continuum , 1989 .

[7]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[8]  Stefan Hagemann,et al.  An improved land surface parameter dataset for global and regional climate models , 2002 .

[9]  E. Roeckner,et al.  Sensitivity of a general circulation model to parameterizations of cloud–turbulence interactions in the atmospheric boundary layer , 1995 .

[10]  Gerald L. Potter,et al.  Simulation of the Northern Summer Monsoon in the ECMWF Model: Sensitivity to Horizontal Resolution , 1994 .

[11]  Ulrike Lohmann,et al.  Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model , 1996 .

[12]  D. Hartmann Radiative effects of clouds on Earth's climate , 1993 .

[13]  Luis Kornblueh,et al.  The atmospheric general circulation model ECHAM5 Part II: Sensitivity of simulated climate to horizontal and vertical resolution , 2004 .

[14]  R. Stratton A high resolution AMIP integration using the Hadley Centre model HadAM2b , 1999 .

[15]  J. Boyle,et al.  Sensitivity of Dynamical Quantities to Horizontal Resolution for a Climate Simulation Using the ECMWF (Cycle 33) Model , 1993 .

[16]  David L. Williamson,et al.  A comparison of semi-lagrangian and Eulerian polar climate simulations , 1998 .

[17]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[18]  A. Simmons,et al.  An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates , 1981 .

[19]  D. Williamson Convergence of atmospheric simulations with increasing horizontal resolution and fixed forcing scales , 1999 .

[20]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[21]  N. McFarlane,et al.  Impact of the Doppler spread parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model , 1997 .

[22]  Impacts of horizontal resolution on simulated climate statistics in ECHAM4 , 1998 .

[23]  B. Rockel,et al.  A parameterization of broad band radiative transfer properties of water, ice, and mixed clouds , 1991 .

[24]  L. Bengtsson,et al.  Hurricane-type vortices in a general circulation , 1995 .

[25]  F. Lott Alleviation of Stationary Biases in a GCM through a Mountain Drag Parameterization Scheme and a Simple Representation of Mountain Lift Forces , 1999 .

[26]  G. Boer,et al.  Numerical convergence of the dynamics of a GCM , 1997 .

[27]  M. Iacono,et al.  Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates: Application to Water Vapor , 1992 .

[28]  Martin Wild,et al.  Radiative Fluxes in the ECHAM5 General Circulation Model , 2006 .

[29]  Michael S. Fox-Rabinovitz,et al.  Consistent vertical and horizontal resolution , 1989 .

[30]  Richard Neale,et al.  Organization of tropical convection in a GCM with varying vertical resolution; implications for the simulation of the Madden-Julian Oscillation , 2001 .

[31]  T. Palmer,et al.  The Sensitivity of the ECMWF Model to the Parameterization of Evaporation from the Tropical Oceans , 1992 .

[32]  J. Kiehl,et al.  Dependence of cloud amount on horizontal resolution in the National Center for Atmospheric Research community climate model , 1991 .

[33]  A. Tompkins A Prognostic Parameterization for the Subgrid-Scale Variability of Water Vapor and Clouds in Large-Scale Models and Its Use to Diagnose Cloud Cover , 2002 .

[34]  S. Grotch,et al.  The impact of horizontal resolution on moist processes in the ECMWF model , 1995 .

[35]  K. Trenberth,et al.  Earth's annual global mean energy budget , 1997 .

[36]  J. Polcher,et al.  On the Land Surface–Atmosphere Coupling and Its Impact in a Single-Column Atmospheric Model , 2001 .

[37]  James J. Hack,et al.  Climate sensitivity of the NCAR Community Climate Model (CCM2) to horizontal resolution , 1995 .

[38]  M. Déqué,et al.  The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling , 1994 .

[39]  V. Pope,et al.  The processes governing horizontal resolution sensitivity in a climate model , 2002 .

[40]  Shian‐Jiann Lin,et al.  Multidimensional Flux-Form Semi-Lagrangian Transport Schemes , 1996 .

[41]  David B. Stephenson,et al.  Simulation of the Asian summer monsoon and its dependence on model horizontal resolution , 1998 .

[42]  Robert Sausen,et al.  Simulation of the present-day climate with the ECHAM model: Impact of model physics and resolution , 1992 .

[43]  François Lott,et al.  A new subgrid‐scale orographic drag parametrization: Its formulation and testing , 1997 .

[44]  G. Boer,et al.  Some Results Concerning the Effect of Horizontal Resolution and Gravity–Wave Drag on Simulated Climate , 1988 .

[45]  V. Pope,et al.  The representation of water vapor and its dependence on vertical resolution in the Hadley Centre Climate Model , 2001 .

[46]  B. Carlson,et al.  Cloud effects on the radiation budget based on ISCCP data (1991 to 1995) , 2005 .

[47]  Č. Branković,et al.  Impact of horizontal resolution on seasonal integrations , 2001 .

[48]  W. Large,et al.  Sensible and Latent Heat Flux Measurements over the Ocean , 1982 .

[49]  M. Wild Radiative Fluxes in the ECHAM 5 General Circulation Model , 2006 .

[50]  J. Curry,et al.  A parameterization of ice cloud optical properties for climate models , 1992 .

[51]  Martin Wild,et al.  A new snow cover fraction parametrization for the ECHAM4 GCM , 2001 .

[52]  M. Tiedtke,et al.  Representation of Clouds in Large-Scale Models , 1993 .

[53]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[54]  K. Emanuel,et al.  The vertical resolution sensitivity of simulated equilibrium temperature and water‐vapour profiles , 2007 .

[55]  Andreas Roesch,et al.  Assessment of Snow Cover and Surface Albedo in the ECHAM5 General Circulation Model , 2006 .

[56]  S. M. Marlais,et al.  An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP I) , 1999 .