Millimeter-Wave Quadrature Mixed-Mode Transmitter With Distributed Parasitic Canceling and LO Leakage Self-Suppression

In this article, a 2 <inline-formula> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> 9-bit millimeter-wave quadrature mixed-mode transmitter (TX) with distributed parasitic canceling and LO leakage self-suppression is proposed. The mixed-mode architecture uses both digital switched capacitor power amplifier (SCPA) and analog amplifier to achieve high output power and enhanced peak/average efficiency at millimeter-wave. In addition, the distributed parasitic canceling with 3-D shielded horizontal capacitor (3-D SHCAP) is adopted to decrease the passive loss for improved efficiency. Besides, the LO leakage self-suppression is introduced, which benefits to linearity and dynamic range. The proposed quadrature mixed-mode TX is implemented and fabricated in the 40-nm CMOS technology. With 1.1/2.2-V supply, it achieves saturated output power of 24.03 dBm with peak system efficiency (SE) of 31.5% at 24 GHz. It also exhibits 23.6% SE for 6-dB PBO at 24 GHz due to Doherty operation. It supports 400-MHz 64QAM signal with an average output power (i.e., <inline-formula> <tex-math notation="LaTeX">$P_{\mathrm{ avg}}$ </tex-math></inline-formula>) of 16.37 dBm, an EVM of −29.6 dB, and an ACLR <inline-formula> <tex-math notation="LaTeX">$\leqslant \,\,-$ </tex-math></inline-formula>29.98 dBc. For 200-MHz 256QAM, it exhibits 15.21 dBm <inline-formula> <tex-math notation="LaTeX">$P_{\mathrm{ avg}}$ </tex-math></inline-formula> with an EVM of −30.9 dB and an ACLR <inline-formula> <tex-math notation="LaTeX">$\leqslant \,\,-$ </tex-math></inline-formula>31.71 dBc at 24 GHz.

[1]  X. You,et al.  A 24–29.5-GHz Highly Linear Phased-Array Transceiver Front-End in 65-nm CMOS Supporting 800-MHz 64-QAM and 400-MHz 256-QAM for 5G New Radio , 2022, IEEE Journal of Solid-State Circuits.

[2]  Hongtao Xu,et al.  A 15-Bit Quadrature Digital Power Amplifier With Transformer-Based Complex-Domain Efficiency Enhancement , 2022, IEEE Journal of Solid-State Circuits.

[3]  Yiyang Shu,et al.  22-30GHz Quadrature Hybrid SCPA with LO Leakage Self-Suppression and Distributed Parasitic-Cancelling Sub-PA Array for Linearity and Efficiency Enhancement , 2022, IEEE Custom Integrated Circuits Conference.

[4]  J. Walling,et al.  A mm-Wave Switched-Capacitor RFDAC , 2022, IEEE Journal of Solid-State Circuits.

[5]  Dieuwert P. N. Mul,et al.  A Four-Way Series Doherty Digital Polar Transmitter at mm-Wave Frequencies , 2022, IEEE Journal of Solid-State Circuits.

[6]  Xun Luo,et al.  Quadrature Switched/Floated Capacitor Power Amplifier With Reconfigurable Self-Coupling Canceling Transformer for Deep Back-Off Efficiency Enhancement , 2021, IEEE Journal of Solid-State Circuits.

[7]  Masoud Pashaeifar,et al.  A Millimeter-Wave Mutual-Coupling-Resilient Double-Quadrature Transmitter for 5G Applications , 2021, IEEE Journal of Solid-State Circuits.

[8]  Xun Luo,et al.  A 4-Element Digital Modulated Polar Phased-Array Transmitter With Phase Modulation Phase-Shifting , 2021, IEEE Journal of Solid-State Circuits.

[9]  Shih-Chang Hung,et al.  A Quadrature Class-G Complex-Domain Doherty Digital Power Amplifier , 2021, IEEE Journal of Solid-State Circuits.

[10]  Hongtao Xu,et al.  A Quadrature Digital Power Amplifier With Hybrid Doherty and Impedance Boosting for Complex Domain Power Back-Off Efficiency Enhancement , 2021, IEEE Journal of Solid-State Circuits.

[11]  Aoyang Zhang,et al.  26.6 A 5-to-6GHz Current-Mode Subharmonic Switching Digital Power Amplifier for Enhancing Power Back-Off Efficiency , 2021, 2021 IEEE International Solid- State Circuits Conference (ISSCC).

[12]  Hua Wang,et al.  26.3 A mm-Wave Power Amplifier for 5G Communication Using a Dual-Drive Topology Exhibiting a Maximum PAE of 50% and Maximum DE of 60% at 30GHz , 2021, 2021 IEEE International Solid- State Circuits Conference (ISSCC).

[13]  Patrick Reynaert,et al.  26.2 A Doherty-Like Load-Modulated Balanced Power Amplifier Achieving 15.5dBm Average Pout and 20% Average PAE at a Data Rate of 18Gb/s in 28nm CMOS , 2021, 2021 IEEE International Solid- State Circuits Conference (ISSCC).

[14]  Hua Wang,et al.  A MM-Wave Current-Mode Inverse Outphasing Transmitter Front-End: A Circuit Duality of Conventional Voltage-Mode Outphasing , 2020, IEEE Journal of Solid-State Circuits.

[15]  Shih-Chang Hung,et al.  A Multimode Multi-Efficiency-Peak Digital Power Amplifier , 2020, IEEE Journal of Solid-State Circuits.

[16]  Xun Luo,et al.  Empowering Multifunction: Digital Power Amplifiers, the Last RF Frontier of the Analog and Digital Kingdoms , 2020, IEEE Microwave Magazine.

[17]  Hao Min,et al.  A Broadband Switched-Transformer Digital Power Amplifier for Deep Back-Off Efficiency Enhancement , 2020, IEEE Journal of Solid-State Circuits.

[18]  P. Wambacq,et al.  A 10.56 Gbit/s, -27.8 dB EVM Polar Transmitter at 60 GHz in 28nm CMOS , 2020, 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[19]  Hua Wang,et al.  A Review of Technologies and Design Techniques of Millimeter-Wave Power Amplifiers , 2020, IEEE Transactions on Microwave Theory and Techniques.

[20]  H. Qian,et al.  High Resolution Reconfigurable Phase-Tuning Line Using Self-Shielded 3-D Interdigital Capacitor , 2020, IEEE Microwave and Wireless Components Letters.

[21]  James F. Buckwalter,et al.  A 30-GHz CMOS SOI Outphasing Power Amplifier With Current Mode Combining for High Backoff Efficiency and Constant Envelope Operation , 2020, IEEE Journal of Solid-State Circuits.

[22]  Peter M. Asbeck,et al.  A 28 GHz Single-Input Linear Chireix (SILC) Power Amplifier in 130 nm SiGe Technology , 2020, IEEE Journal of Solid-State Circuits.

[23]  Huy Thong Nguyen,et al.  A Coupler-Based Differential mm-Wave Doherty Power Amplifier With Impedance Inverting and Scaling Baluns , 2020, IEEE Journal of Solid-State Circuits.

[24]  Xun Luo,et al.  A 20–32-GHz Quadrature Digital Transmitter Using Synthesized Impedance Variation Compensation , 2020, IEEE Journal of Solid-State Circuits.

[25]  Shuhei Yamada,et al.  A 42.2-Gb/s 4.3-pJ/b 60-GHz Digital Transmitter With 12-b/Symbol Polarization MIMO , 2019, IEEE Journal of Solid-State Circuits.

[26]  Mike Shuo-Wei Chen,et al.  A Watt-Level Phase-Interleaved Multi-Subharmonic Switching Digital Power Amplifier , 2019, IEEE Journal of Solid-State Circuits.

[27]  Lei Zhou,et al.  A Highly Linear Wideband Polar Class-E CMOS Digital Doherty Power Amplifier , 2019, IEEE Transactions on Microwave Theory and Techniques.

[28]  Song Hu,et al.  A 28-/37-/39-GHz Linear Doherty Power Amplifier in Silicon for 5G Applications , 2019, IEEE Journal of Solid-State Circuits.

[29]  Hua Wang,et al.  A 28-GHz Flip-Chip Packaged Chireix Transmitter With On-Antenna Outphasing Active Load Modulation , 2019, IEEE Journal of Solid-State Circuits.

[30]  Gabriel M. Rebeiz,et al.  A ${D}$ -Band Digital Transmitter with 64-QAM and OFDM Free-Space Constellation Formation , 2018, IEEE Journal of Solid-State Circuits.

[31]  Marco Vigilante,et al.  A Wideband Class-AB Power Amplifier With 29–57-GHz AM–PM Compensation in 0.9-V 28-nm Bulk CMOS , 2018, IEEE Journal of Solid-State Circuits.

[32]  Stefano Pellerano,et al.  A CMOS Wideband Current-Mode Digital Polar Power Amplifier With Built-In AM–PM Distortion Self-Compensation , 2018, IEEE Journal of Solid-State Circuits.

[33]  James Buckwalter,et al.  A high-efficiency 28GHz outphasing PA with 23dBm output power using a triaxial balun combiner , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[34]  Gabriel M. Rebeiz,et al.  A Low-Cost Scalable 32-Element 28-GHz Phased Array Transceiver for 5G Communication Links Based on a $2\times 2$ Beamformer Flip-Chip Unit Cell , 2018, IEEE Journal of Solid-State Circuits.

[35]  Sorin P. Voinigescu,et al.  Ultra-Broadband I/Q RF-DAC Transmitters , 2017, IEEE Transactions on Microwave Theory and Techniques.

[36]  Harish Krishnaswamy,et al.  Wideband Mixed-Domain Multi-Tap Finite-Impulse Response Filtering of Out-of-Band Noise Floor in Watt-Class Digital Transmitters , 2017, IEEE Journal of Solid-State Circuits.

[37]  Voravit Vorapipat,et al.  A Class-G Voltage-Mode Doherty Power Amplifier , 2017, IEEE Journal of Solid-State Circuits.

[38]  Bumman Kim,et al.  Efficient Digital Quadrature Transmitter Based on IQ Cell Sharing , 2017, IEEE Journal of Solid-State Circuits.

[39]  Hossein Hashemi,et al.  Watt-Level mm-Wave Power Amplification With Dynamic Load Modulation in a SiGe HBT Digital Power Amplifier , 2017, IEEE Journal of Solid-State Circuits.

[40]  Andrea Bevilacqua,et al.  13.9 A 1.1V 28.6dBm fully integrated digital power amplifier for mobile and wireless applications in 28nm CMOS technology with 35% PAE , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[41]  Peter M. Asbeck,et al.  Voltage Mode Doherty Power Amplifier , 2017, IEEE Journal of Solid-State Circuits.

[42]  Chunshu Li,et al.  Digitally Modulated CMOS Polar Transmitters for Highly-Efficient mm-Wave Wireless Communication , 2016, IEEE Journal of Solid-State Circuits.

[43]  Jeffrey S. Walling,et al.  A Quadrature Switched Capacitor Power Amplifier , 2016, IEEE Journal of Solid-State Circuits.

[44]  Hua Wang,et al.  The Wireless Workhorse: Mixed-Signal Power Amplifiers Leverage Digital and Analog Techniques to Enhance Large-Signal RF Operations , 2015, IEEE Microwave Magazine.

[45]  S. M. Alavi,et al.  All-Digital I/Q RF-DAC , 2014 .

[46]  Songcheol Hong,et al.  A Digital Polar CMOS Power Amplifier With a 102-dB Power Dynamic Range Using a Digitally Controlled Bias Generator , 2014, IEEE Transactions on Microwave Theory and Techniques.

[47]  Howard C. Luong,et al.  A CMOS WCDMA/WLAN Digital Polar Transmitter With AM Replica Feedback Linearization , 2013, IEEE Journal of Solid-State Circuits.

[48]  Gabriel M. Rebeiz,et al.  A 2-Bit, 24 dBm, Millimeter-Wave SOI CMOS Power-DAC Cell for Watt-Level High-Efficiency, Fully Digital m-ary QAM Transmitters , 2013, IEEE Journal of Solid-State Circuits.

[49]  Patrick Reynaert,et al.  A 60-GHz Outphasing Transmitter in 40-nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[50]  Ali M. Niknejad,et al.  A fully-integrated efficient CMOS inverse Class-D power amplifier for digital polar transmitters , 2012, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[51]  Jeffrey S. Walling,et al.  A Switched-Capacitor RF Power Amplifier , 2011, IEEE Journal of Solid-State Circuits.