Computation of economic equilibria by a sequence of linear complementarity problems

This paper reviews computational experience with a modeling format and solution algorithm for partial and general economic equilibrium problems. This approach handles cases characterized by weak inequalities, complementary slackness, and ‘nonintegrability’.

[1]  P. Samuelson,et al.  Foundations of Economic Analysis. , 1948 .

[2]  H. Scarf Some Examples of Global Instability of the Competitive Equilibrium , 1960 .

[3]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[4]  G. Dantzig,et al.  COMPLEMENTARY PIVOT THEORY OF MATHEMATICAL PROGRAMMING , 1968 .

[5]  P. Zusman Spatial and temporal price and allocation models , 1971 .

[6]  T. Koopmans,et al.  On the definition and computation of a capital stock invariant under optimization , 1972 .

[7]  H. Scarf The computation of equilibrium prices , 1973 .

[8]  Lars Mathiesen Efficiency Pricing in a Linear Programming Model: A Case with Constraints on Dual Variables. , 1974 .

[9]  Marshall L. Fisher,et al.  A simplicial algorithm for the nonlinear complementarity problem , 1974, Math. Program..

[10]  M. Carey INTEGRABILITY AND MATHEMATICAL PROGRAMMING MODELS: A SURVEY AND A PARAMETRIC APPROACH , 1977 .

[11]  J. Tomlin Robust implementation of Lemke's method for the linear complementarity problem , 1978 .

[12]  B. Eaves A Locally Quadratically Convergent Algorithm for Computing Stationary Points. , 1978 .

[13]  M. Todd A note on computing equilibria in economies with activity analysis models of production , 1979 .

[14]  N. Josephy Newton's Method for Generalized Equations. , 1979 .

[15]  V. Ginsburgh,et al.  Activity analysis and general equilibrium modelling , 1981 .

[16]  A. Talman,et al.  Algorithms for the linear complementarity problem which allow an arbitrary starting point , 1981 .

[17]  Jong-Shi Pang,et al.  Iterative methods for variational and complementarity problems , 1982, Math. Program..

[18]  William W. Hogan,et al.  On Convergence of the PIES Algorithm for Computing Equilibria , 1982, Oper. Res..

[19]  Michael A. Saunders,et al.  MINOS 5. 0 user's guide , 1983 .

[20]  Michael J. Todd,et al.  An efficient simplicial algorithm for computing a zero of a convex union of smooth functions , 1983, Math. Program..

[21]  Alan S. Manne,et al.  20 – North–South Trade, Capital Flows, and Economic Growth: An Almost Neoclassical Model , 1984 .

[22]  Mark Broadie,et al.  An introduction to the octahedral algorithm for the computation of economic equilibria , 1985 .

[23]  Lars Mathiesen,et al.  Computational Experience in Solving Equilibrium Models by a Sequence of Linear Complementarity Problems , 1985, Oper. Res..