Weil sums of binomials, three-level cross-correlation, and a conjecture of Helleseth

Let q be a power of a prime p, let ?q:Fq?C be the canonical additive character ?q(x)=exp(2πiTrFq/Fp(x)/p), let d be an integer with gcd(d,q-1)=1, and consider Weil sums of the form Wq,d(a)=?x?Fq?q(xd+ax). We are interested in how many different values Wq,d(a) attains as a runs through Fq*. We show that if |{Wq,d(a):a?Fq*}|=3, then all the values in {Wq,d(a):a?Fq*} are rational integers and one of these values is 0. This translates into a result on the cross-correlation of a pair of p-ary maximum length linear recursive sequences of period q-1, where one sequence is the decimation of the other by d: if the cross-correlation is three-valued, then all the values are in Z and one of them is -1. We then use this to prove the binary case of a conjecture of Helleseth, which states that if q is of the form 22n, then the cross-correlation cannot be three-valued.

[1]  L. Carlitz Explicit evaluation of certain exponential sums. , 1979 .

[2]  Anne Canteaut,et al.  Weight Divisibility of Cyclic Codes, Highly Nonlinear Functions on F2m, and Crosscorrelation of Maximum-Length Sequences , 2000, SIAM J. Discret. Math..

[3]  Harold Davenport,et al.  On an Exponential Sum , 1936 .

[4]  P. Charpin,et al.  Couples de suites binaires de longueur maximale ayant une corrélation croisée à trois valeurs: conjecture de Welch , 1999 .

[5]  Pericles S. Theocaris Number theory in science and communication , 1986 .

[6]  C. Gilbert,et al.  Statistical systems of particles in the expanding universe , 1952 .

[7]  A. Weil On Some Exponential Sums. , 1948, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Philippe Langevin,et al.  Power Permutations in Dimension 32 , 2010, SETA.

[9]  S. Lang Algebraic Number Theory , 1971 .

[10]  Gary McGuire,et al.  On Certain 3-Weight Cyclic Codes Having Symmetric Weights and a Conjecture of Helleseth , 2001, SETA.

[11]  Robert S. Coulter Explicit evaluations of some Weil sums , 1998 .

[12]  M.B. Pursley,et al.  Crosscorrelation properties of pseudorandom and related sequences , 1980, Proceedings of the IEEE.

[13]  R. Games,et al.  The geometry of m-Sequences: Three-valued crosscorrelations and quadrics in finite projective geometry , 1986 .

[14]  L. Carlitz,et al.  Bounds for exponential sums , 1957 .

[15]  L. Carlitz A note on exponential sums , 1969 .

[16]  A. Robert Calderbank,et al.  Proof of a conjecture of Sarwate and Pursley regarding pairs of binary m-sequences , 1995, IEEE Trans. Inf. Theory.

[17]  A. Karatsuba,et al.  On estimates of complete trigonometric sums , 1967 .

[18]  Richard A. Games The geometry of quadrics and correlations of sequences , 1986, IEEE Trans. Inf. Theory.

[19]  A. Robert Calderbank,et al.  On a conjecture of Helleseth regarding pairs of binary m-sequences , 1996, IEEE Trans. Inf. Theory.

[20]  Todd Cochrane,et al.  Explicit bounds on monomial and binomial exponential sums , 2011 .

[21]  Underwood Dudley Elementary Number Theory , 1978 .

[22]  Tor Helleseth,et al.  Monomial and quadratic bent functions over the finite fields of odd characteristic , 2006, IEEE Transactions on Information Theory.

[23]  Tor Helleseth,et al.  Some results about the cross-correlation function between two maximal linear sequences , 1976, Discret. Math..

[24]  David Burton Elementary Number Theory , 1976 .

[25]  Pascale Charpin,et al.  Cyclic codes with few weights and Niho exponents , 2004, J. Comb. Theory, Ser. A.

[26]  H. Hollmann,et al.  A Proof of the Welch and Niho Conjectures on Cross-Correlations of Binary m-Sequences , 2001 .

[27]  Tao Feng On cyclic codes of length $${2^{2^r}-1}$$ with two zeros whose dual codes have three weights , 2012, Des. Codes Cryptogr..

[28]  L. J. Mordell,et al.  ON A SUM ANALOGOUS TO A GAUSS'S SUM , 1932 .

[29]  Todd Cochrane Stepanov's Method Applied to Binomial Exponential Sums , 2003 .