Separating Microstructure Noise from Volatility

There are two volatility components embedded in the returns constructed using recorded stock prices: the genuine time-varying volatility of the unobservable returns that would prevail (in equilibrium) in a frictionless, full-information, economy and the variance of the equally unobservable microstructure noise. Using straightforward sample averages of high-frequency return data recorded at different frequencies, we provide a simple technique to identify both volatility features. We apply our methodology to a sample of S&P100 stocks.

[1]  M. Parkinson The Extreme Value Method for Estimating the Variance of the Rate of Return , 1980 .

[2]  M. J. Klass,et al.  On the Estimation of Security Price Volatilities from Historical Data , 1980 .

[3]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[4]  S. Beckers,et al.  Variances of Security Price Returns Based on High , 1983 .

[5]  K. French,et al.  Expected stock returns and volatility , 1987 .

[6]  G. Schwert Why Does Stock Market Volatility Change Over Time? , 1988 .

[7]  G. Schwert,et al.  Heteroskedasticity in Stock Returns , 1989 .

[8]  E. Elton,et al.  The Performance of Publicly Offered Commodity Funds , 1990 .

[9]  Robert F. Engle,et al.  Stock Volatility and the Crash of '87: Discussion , 1990 .

[10]  Maureen O'Hara,et al.  Time and the Process of Security Price Adjustment , 1992 .

[11]  R. Engle,et al.  A Permanent and Transitory Component Model of Stock Return Volatility , 1993 .

[12]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[13]  Tim Bollerslev,et al.  Long-term equity anticipation securities and stock market volatility dynamics , 1999 .

[14]  T. Bollerslev,et al.  MODELING AND PRICING LONG- MEMORY IN STOCK MARKET VOLATILITY , 1996 .

[15]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[16]  T. Bollerslev,et al.  Intraday periodicity and volatility persistence in financial markets , 1997 .

[17]  T. Bollerslev,et al.  Deutsche Mark–Dollar Volatility: Intraday Activity Patterns, Macroeconomic Announcements, and Longer Run Dependencies , 1998 .

[18]  F. Comte,et al.  Long memory in continuous‐time stochastic volatility models , 1998 .

[19]  Nicholas G. Polson,et al.  The Impact of Jumps in Volatility and Returns , 2000 .

[20]  David S. Bates Post-'87 crash fears in the S&P 500 futures option market , 2000 .

[21]  Ananth N. Madhavan,et al.  Market Microstructure: A Survey , 2000 .

[22]  Chris Kirby,et al.  The Economic Value of Volatility Timing , 2000 .

[23]  Hans R. Stoll,et al.  Presidential Address: Friction , 2000 .

[24]  Jun Pan The jump-risk premia implicit in options: evidence from an integrated time-series study , 2001 .

[25]  Chris Kirby,et al.  The Economic Value of Volatility Timing Using 'Realized' Volatility , 2001 .

[26]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[27]  Michael W. Brandt,et al.  Range-Based Estimation of Stochastic Volatility Models , 2001 .

[28]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[29]  N. Meddahi,et al.  An Eigenfunction Approach for Volatility Modeling , 2001 .

[30]  Jun Pan The Jump-Risk Premia Implicit in Options : Evidence from an Integrated Time-Series Study , 2001 .

[31]  A. Ohanissian Using Temporal Aggregation to Distinguish between True and Spurious Long Memory , 2001 .

[32]  Michael W. Brandt,et al.  A No-Arbitrage Approach to Range-Based Estimation of Return Covariances and Correlations , 2002 .

[33]  John Krainer,et al.  Stock market volatility , 2002 .

[34]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[35]  N. Shephard,et al.  Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics , 2004 .

[36]  Yacine Ait-Sahalia,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .

[37]  Chris Kirby,et al.  The economic value of volatility timing using “realized” volatility ☆ , 2003 .

[38]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[39]  Benoit Perron,et al.  Long Memory and the Relation between Implied and Realized Volatility , 2006 .

[40]  C. S. Jones The dynamics of stochastic volatility: evidence from underlying and options markets , 2003 .

[41]  A. Gallant,et al.  Alternative models for stock price dynamics , 2003 .

[42]  P. Hansen,et al.  An Unbiased Measure of Realized Variance , 2004 .

[43]  Roel C. A. Oomen,et al.  Properties of realized variance for a pure jump process: calendar time sampling versus business time sampling , 2004 .

[44]  R. Oomen Properties of Bias Corrected Realized Variance in Calendar Time and Business Time , 2004 .

[45]  Peter Reinhard Hansen,et al.  Realized Variance and IID Market Microstructure Noise , 2004 .

[46]  Jeffrey R. Russell,et al.  Microstructure noise, realized volatility, and optimal sampling , 2004 .

[47]  P. Hansen,et al.  Realized Variance and Market Microstructure Noise , 2005 .

[48]  Asger Lunde,et al.  Realized Variance and Market Microstructure Noise , 2006 .