Orthogonal projection based subspace identification against colored noise

In this paper, a bias-eliminated subspace identification method is proposed for industrial applications subject to colored noise. Based on double orthogonal projections, an identification algorithm is developed to eliminate the influence of colored noise for consistent estimation of the extended observability matrix of the plant state-space model. A shift-invariant approach is then given to retrieve the system matrices from the estimated extended observability matrix. The persistent excitation condition for consistent estimation of the extended observability matrix is analyzed. Moreover, a numerical algorithm is given to compute the estimation error of the estimated extended observability matrix. Two illustrative examples are given to demonstrate the effectiveness and merit of the proposed method.

[1]  Jing Wang,et al.  An effective direct closed loop identification method for linear multivariable systems with colored noise , 2014 .

[2]  Si-Zhao Joe Qin,et al.  An overview of subspace identification , 2006, Comput. Chem. Eng..

[3]  Lennart Ljung,et al.  Some facts about the choice of the weighting matrices in Larimore type of subspace algorithms , 2002, Autom..

[4]  Mats Viberg,et al.  Subspace-based methods for the identification of linear time-invariant systems , 1995, Autom..

[5]  Magnus Jansson,et al.  Subspace Identification and ARX Modeling , 2003 .

[6]  Dietmar Bauer,et al.  Asymptotic properties of subspace estimators , 2005, Autom..

[7]  A. Chiuso,et al.  The asymptotic variance of subspace estimates , 2004 .

[8]  Tao Liu,et al.  Iterative identification of output error model for industrial processes with time delay subject to colored noise , 2015 .

[9]  Biao Huang,et al.  Bias-eliminated subspace model identification under time-varying deterministic type load disturbance , 2015 .

[10]  Michel Verhaegen,et al.  Closed-loop subspace identification methods: an overview , 2013 .

[11]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[12]  Laurent Mevel,et al.  Efficient Multi-Order Uncertainty Computation for Stochastic Subspace Identification , 2013 .

[13]  Tony Gustafsson Subspace identification using instrumental variable techniques , 2001, Autom..

[14]  Feng Ding,et al.  Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition , 2016, J. Comput. Appl. Math..

[15]  Feng Ding,et al.  Recursive least squares parameter identification algorithms for systems with colored noise using the filtering technique and the auxilary model , 2015, Digit. Signal Process..

[16]  Patrick Dewilde,et al.  Subspace model identification Part 1. The output-error state-space model identification class of algorithms , 1992 .

[17]  Ding Feng Hierarchical Identification of State Space Models for Multivariable Systems , 2005 .

[18]  Bo Wahlberg,et al.  Analysis of state space system identification methods based on instrumental variables and subspace fitting , 1997, Autom..

[19]  Dietmar Bauer,et al.  Estimating ARMAX systems for multivariate time series using the state approach to subspace algorithms , 2009, J. Multivar. Anal..

[20]  Jin Wang,et al.  Closed-loop subspace identification using the parity space , 2006, Autom..

[21]  Tony Gustafsson Subspace-based system identification: weighting and pre-filtering of instruments , 2002, Autom..

[22]  Bo Wahlberg,et al.  On Consistency of Subspace Methods for System Identification , 1998, Autom..

[23]  Wallace E. Larimore,et al.  Canonical variate analysis in identification, filtering, and adaptive control , 1990, 29th IEEE Conference on Decision and Control.

[24]  M. Verhaegen Subspace model identification Part 2. Analysis of the elementary output-error state-space model identification algorithm , 1992 .