Fenestration of Today and Tomorrow: A State-of-the-Art Review and Future Research Opportunities

[1]  Bjørn Petter Jelle,et al.  Traditional, state-of-the-art and future thermal building insulation materials and solutions Prope , 2011 .

[2]  Arild Gustavsen,et al.  Key elements of and material performance targets for highly insulating window frames , 2011 .

[3]  Arild Gustavsen,et al.  Aerogel insulation for building applications: A state-of-the-art review , 2011 .

[4]  C. Granqvist,et al.  Oxide-based electrochromics: Advances in materials and devices. , 2011 .

[5]  Arild Gustavsen,et al.  Gas-filled panels for building applications: A state-of-the-art review , 2010 .

[6]  Svend Svendsen,et al.  Development of a slim window frame made of glass fibre reinforced polyester , 2010 .

[7]  Arild Gustavsen Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames , 2010 .

[8]  Arild Gustavsen,et al.  Phase Change Materials for Building Applications: A State-of-the-Art Review , 2010 .

[9]  Andreas Jonsson,et al.  Visual and energy performance of switchable windows with antireflection coatings , 2010 .

[10]  Arild Gustavsen,et al.  The path to the high performance thermal building insulation materials and solutions of tomorrow , 2010 .

[11]  Garikoitz Beobide,et al.  Using scanning probe microscopy to study the effect of molecular weight of poly(3-hexylthiophene) on the performance of poly(3-hexylthiophene):TiO2 nanorod photovoltaic devices , 2009 .

[12]  Philip C. Eames,et al.  Thermal performance analysis of an electrochromic vacuum glazing with low emittance coatings , 2010 .

[13]  Arild Gustavsen,et al.  Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State-of-the-Art Review , 2010 .

[14]  Arild Gustavsen,et al.  Vacuum insulation panels for building applications: A review and beyond , 2010 .

[15]  B. P. Jelle,et al.  SOLAR RADIATION GLAZING FACTORS FOR ELECTROCHROMIC WINDOWS FOR BUILDING APPLICATIONS , 2010 .

[16]  C. Granqvist,et al.  Advances in chromogenic materials and devices , 2010 .

[17]  Philip C. Eames,et al.  Comparison of vacuum glazing thermal performance predicted using two- and three-dimensional models and their experimental validation , 2009 .

[18]  M. Reidinger,et al.  Low-emitting transparent coatings based on tin doped indiumoxide applied via a sol–gel routine , 2009 .

[19]  Jian Zhang,et al.  Fabrication of organic solar array for applications in microelectromechanical systems , 2009 .

[20]  H. Cachier,et al.  Behaviour of self-cleaning glass in urban atmosphere , 2008 .

[21]  Arild Gustavsen,et al.  State-of-the-Art Highly Insulating Window Frames - Research and Market Review , 2008 .

[22]  Arild Gustavsen,et al.  Developing Low-conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools — State-of-the-Art Review , 2008 .

[23]  Philip C. Eames,et al.  Vacuum glazing: Current performance and future prospects , 2008 .

[24]  Jørgen Munthe Schultz,et al.  Evacuated aerogel glazings , 2008 .

[25]  W. Rahman,et al.  Injection moulding simulation analysis of natural fiber composite window frame , 2008 .

[26]  Patrick James,et al.  Potential of emerging glazing technologies for highly glazed buildings in hot arid climates , 2008 .

[27]  H. Manz,et al.  On minimizing heat transport in architectural glazing , 2008 .

[28]  C. Granqvist Transparent conductors as solar energy materials: A panoramic review , 2007 .

[29]  Svend Svendsen,et al.  Comparison between ASHRAE and ISO thermal transmittance calculation methods , 2007 .

[30]  Arild Gustavsen,et al.  Solar material protection factor (SMPF) and solar skin protection factor (SSPF) for window panes and other glass structures in buildings , 2007 .

[31]  Myoung-Souk Yeo,et al.  Evaluation of inside surface condensation in double glazing window system with insulation spacer: A case study of residential complex , 2007 .

[32]  Philip C. Eames,et al.  Low emittance coatings and the thermal performance of vacuum glazing , 2007 .

[33]  Philip C. Eames,et al.  Development of electrochromic evacuated advanced glazing , 2006 .

[34]  H. Manz,et al.  Triple vacuum glazing: Heat transfer and basic mechanical design constraints , 2006 .

[35]  Dariush Arasteh,et al.  Zero Energy Windows , 2006 .

[36]  Massimo Guglielmi,et al.  Commercial and laboratory prepared titanium dioxide thin films for self-cleaning glasses: Photocatalytic performance and chemical durability , 2006 .

[37]  M. Demirbas Thermal Energy Storage and Phase Change Materials: An Overview , 2006 .

[38]  J. Fricke,et al.  Silica aerogel granulate material for thermal insulation and daylighting , 2005 .

[39]  Kiyoshi Chiba,et al.  Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass , 2005 .

[40]  K. Guan Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films , 2005 .

[41]  Finn Harken Kristiansen,et al.  Super insulating aerogel glazing , 2005 .

[42]  A. Beck,et al.  Silica-aerogel granulate – Structural, optical and thermal properties , 2004 .

[43]  M. Einarsrud,et al.  Improvement of the silica aerogel strengthening process for scaling-up monolithic tile production , 2004 .

[44]  Amar M. Khudhair,et al.  A review on phase change energy storage: materials and applications , 2004 .

[45]  Study of the optical properties of AlN/ZrN/AlN low-e coating , 2004 .

[46]  M. Delre Study of the optical properties of AlN/ZrN/AlN low-e coating , 2004 .

[47]  C. Lampert Chromogenic smart materials , 2004 .

[48]  Arne Roos,et al.  Antireflection treatment of low-emitting glazings for energy efficient windows with high visible transmittance , 2003 .

[49]  Kamal Abdel Radi Ismail,et al.  Thermally effective windows with moving phase change material curtains , 2001 .

[50]  Bjørn Petter Jelle,et al.  Performance of an electrochromic window based on polyaniline, prussian blue and tungsten oxide , 1999 .

[51]  Philip C. Eames,et al.  Fabrication of evacuated glazing at low temperature , 1998 .

[52]  Svend Svendsen,et al.  Monolithic silica aerogel in superinsulating glazings , 1998 .

[53]  S. M. Hasnain Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques , 1998 .

[54]  C. Lampert Smart switchable glazing for solar energy and daylight control , 1998 .

[55]  P. Achard,et al.  Structural investigation in monolithic silica aerogels and thermal properties , 1998 .

[56]  Claes G. Granqvist,et al.  Handbook of inorganic electrochromic materials , 1995 .

[57]  D. Arasteh Advances in window technology: 1973-1993 , 1994 .

[58]  Bjørn Petter Jelle,et al.  Transmission Spectra of an Electrochromic Window Based on Polyaniline, Prussian Blue and Tungsten Oxide , 1993 .

[59]  M. Prince,et al.  Advances in Solar Energy: An Annual Review of Research and Development , 1993 .

[60]  Bjørn Petter Jelle,et al.  Transmission spectra of an electrochromic window consisting of polyaniline, prussian blue and tungsten oxide , 1993 .

[61]  D. Feldman,et al.  Latent heat storage in concrete , 1989 .

[62]  C. Lampert,et al.  Electrochromic materials and devices for energy-efficient windows. [161 references] , 1984 .