THF 0 – The Core TPTP Language for Classical Higher-Order Logic

There is a well established infrastructure that supports research, development, and deployment of first-order Automated Theorem Proving (ATP) systems, stemming from the Thousands of Problems for Theorem Provers (TPTP) problem library. One of the keys to the success of the TPTP and related infrastructure is the consistent use of the TPTP language. This paper introduces the core TPTP language for classical higher-order logic (Church’s simple type theory) – THF0. THF0 is a conservative extension of the existing first-order TPTP language. The use of THF0 in building higher-order analogs of some of the existing first-order TPTP infrastructure is explained.

[1]  P. Martin-Löf Notes on constructive mathematics , 1970 .

[2]  Christoph Benzmüller,et al.  Higher-order semantics and extensionality , 2004, Journal of Symbolic Logic.

[3]  Geoff Sutcliffe,et al.  Extending the TPTP Language to Higher-Order Logic with Automated Parser Generation , 2006, IJCAR.

[4]  Per Martin-Löf,et al.  Intuitionistic type theory , 1984, Studies in proof theory.

[5]  Geoff Sutcliffe,et al.  The TPTP Problem Library , 1994, Journal of Automated Reasoning.

[6]  Geoff Sutcliffe,et al.  TSTP Data-Exchange Formats for Automated Theorem Proving Tools , 2004 .

[7]  F. Wiedijk The Seventeen Provers of the World , 2006 .

[8]  Volker Sorge,et al.  Combined reasoning by automated cooperation , 2008, J. Appl. Log..

[9]  Geoff Sutcliffe,et al.  TPTP, TSTP, CASC, etc , 2007, CSR.

[10]  Geoff Sutcliffe,et al.  The state of CASC , 2006, AI Commun..

[11]  Christoph Benzmüller,et al.  Progress Report on LEO-II -- An Automatic Theorem Prover for Higher-Order Logic , 2007 .

[12]  Koen Claessen,et al.  Using the TPTP Language for Writing Derivations and Finite Interpretations , 2006, IJCAR.

[13]  Christoph Benzmüller,et al.  System Description: LEO - A Higher-Order Theorem Prover , 1998, CADE.

[14]  Geoff Sutcliffe,et al.  Semantic Derivation Verification , 2005, FLAIRS Conference.

[15]  J. Y. Girard,et al.  Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .

[16]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[17]  Frank Pfenning,et al.  TPS: A theorem-proving system for classical type theory , 1996, Journal of Automated Reasoning.

[18]  Christoph Benzmüller,et al.  A Structured Set of Higher-Order Problems , 2005, TPHOLs.

[19]  Geoff Sutcliffe,et al.  An Interactive Derivation Viewer , 2007, UITP@FLoC.