On some properties and an application of the logarithmic barrier method
暂无分享,去创建一个
[1] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[2] G. Sonnevend. An "analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming , 1986 .
[3] R. Cominetti. Nonlinear Averages and Convergence of Penalty Trajectories in Convex Programming , 1999 .
[4] Nimrod Megiddo,et al. Boundary Behavior of Interior Point Algorithms in Linear Programming , 1989, Math. Oper. Res..
[5] Jörg Fliege,et al. Steepest descent methods for multicriteria optimization , 2000, Math. Methods Oper. Res..
[6] Garth P. McCormick,et al. Logarithmic SUMT limits in convex programming , 2001, Math. Program..
[7] Renato D. C. Monteiro,et al. Interior path following primal-dual algorithms. part I: Linear programming , 1989, Math. Program..
[8] Alfred Auslender. Penalty and Barrier Methods: A Unified Framework , 1999, SIAM J. Optim..
[9] L. M. Graña Drummond,et al. THE CENTRAL PATH IN SMOOTH CONVEX SEMIDEFINITE PROGRAMS , 2002 .
[10] Renato D. C. Monteiro,et al. On the Existence and Convergence of the Central Path for Convex Programming and Some Duality Results , 1998, Comput. Optim. Appl..
[11] R. Sundaram. A First Course in Optimization Theory: Optimization in ℝ n , 1996 .
[12] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[13] JAHN Johannes. Scalarization in vector optimization , 1984 .
[14] Roberto Cominetti,et al. Asymptotic Analysis for Penalty and Barrier Methods in Convex and Linear Programming , 1997, Math. Oper. Res..
[15] R. Tyrrell Rockafellar,et al. Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.
[16] Anthony V. Fiacco,et al. Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .
[17] C. Tammer,et al. Theory of Vector Optimization , 2003 .
[18] R. C. Monteiro,et al. Interior path following primal-dual algorithms , 1988 .
[19] Etienne de Klerk,et al. On the Convergence of the Central Path in Semidefinite Optimization , 2002, SIAM J. Optim..
[20] S. Sinha. A Duality Theorem for Nonlinear Programming , 1966 .
[21] Nelson Maculan,et al. On the choice of parameters for the weighting method in vector optimization , 2007, Math. Program..
[22] L. McLinden. An analogue of Moreau's proximation theorem, with application to the nonlinear complementarity problem. , 1980 .
[23] Alfredo N. Iusem,et al. A Projected Gradient Method for Vector Optimization Problems , 2004, Comput. Optim. Appl..
[24] Clóvis C. Gonzaga,et al. Examples of ill-behaved central paths in convex optimization , 2005, Math. Program..
[25] B. Svaiter,et al. A steepest descent method for vector optimization , 2005 .
[26] Kaisa Miettinen,et al. Nonlinear multiobjective optimization , 1998, International series in operations research and management science.
[27] N. Megiddo. Pathways to the optimal set in linear programming , 1989 .
[28] D. T. Luc. Scalarization of vector optimization problems , 1987 .
[29] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[30] P. Wolfe. A duality theorem for non-linear programming , 1961 .