Multi-posets in algebraic logic, group theory, and non-commutative topology

Abstract The recent discovery that very different types of algebras have a quantale as an injective envelope is analyzed. Multi-posets are introduced as a generic structure that admits an essential embedding into a quantale, explicitly realized as a completion. Effect algebras and their non-commutative extensions, quantum B-algebras, KL -algebras, groups, and various other types of algebras are genuine multi-posets, in the sense that they determine full subcategories. Some structures like partially ordered groups or effect algebras do not carry over to the injective envelope. We provide a criterion for extendability in terms of a generalized archimedean property. Applied to non-commutative topology, multi-posets lead to a symmetric version of quantum spaces as a class of spatial quantales.

[1]  Yichuan Yang,et al.  Non-commutative logical algebras and algebraic quantales , 2014, Ann. Pure Appl. Log..

[2]  I. Ferreirim,et al.  Hoops and their implicational reducts (abstract) , 1993, LICS 1993.

[3]  Wolfgang Rump A general Glivenko theorem , 2009 .

[4]  Wolfgang Rump,et al.  Braces, radical rings, and the quantum Yang–Baxter equation , 2007 .

[5]  Wolfgang Rump,et al.  A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation , 2005 .

[6]  George Georgescu,et al.  Pseudo-BCK Algebras: An Extension of BCK Algebras , 2001, DMTCS.

[7]  D. Foulis,et al.  Effect algebras and unsharp quantum logics , 1994 .

[8]  Tom Leinster Higher Operads, Higher Categories , 2003 .

[9]  Nicolas Bourbaki,et al.  Non Commutative Algebra , 1994 .

[10]  L. Fuchs Partially Ordered Algebraic Systems , 2011 .

[11]  Alfred Horn,et al.  The category of semilattices , 1971 .

[12]  Georg Struth,et al.  Quantales , 2018, Arch. Formal Proofs.

[13]  Roberto Giuntini,et al.  Toward a formal language for unsharp properties , 1989 .

[14]  K. I. Rosenthal Quantales and their applications , 1990 .

[15]  Francis Borceux,et al.  An Essay On Noncommutative Topology , 1989 .

[16]  Francis Borceux,et al.  Quantales and C-star-algebras , 1989 .

[17]  Sylvia Pulmannová,et al.  New trends in quantum structures , 2000 .

[18]  I. Ferreirim On varieties and quasivarieties of hoops and their reducts. , 1992 .

[19]  W. Rump Quantum B-algebras , 2013 .

[20]  A. Dvurecenskij,et al.  Pseudoeffect Algebras. II. Group Representations , 2001 .

[21]  David Kruml,et al.  Spatial Quantales , 2002, Appl. Categorical Struct..

[22]  J. Lambek,et al.  INJECTIVE HULLS OF PARTIALLY ORDERED MONOIDS , 2012 .

[23]  THE COMPLETION OF A QUANTUM B-ALGEBRA by Wolfgang RUMP , 2016 .

[24]  Robin Giles,et al.  A Non-Commutative Generalization of Topology , 1971 .

[25]  Francis Borceux,et al.  Quantales and C∗‐Algebras , 1989 .

[26]  M A Ferreirim Isabel ON A CONJECTURE BY ANDRZEJ WRONSKI FOR BCK-ALGEBRAS AND SUBREDUCTS OF HOOPS , 2001 .

[27]  Muhammad Zafrullah,et al.  On Riesz groups , 1993 .

[28]  Anatolij Dvurecenskij,et al.  Algebras in the Positive Cone of po-Groups , 2002, Order.

[29]  Joan Wick Pelletier,et al.  On the quantisation of points , 2001 .

[30]  Pedro Resende,et al.  On quantales that classify C*-algebras ∗ , 2004 .

[31]  C. J. van Alten On Varieties of Biresiduation Algebras , 2006 .

[32]  J. Rosický Multiplicative lattices and $C^\ast$-algebras , 1989 .

[33]  W. Rump L-algebras, self-similarity, and l-groups , 2008 .

[34]  David J. Foulis,et al.  Effects, Observables, States, and Symmetries in Physics , 2007 .

[35]  Kimmo I. Rosenthal,et al.  Constructing locales from quantales , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  David Moore,et al.  Current Research in Operational Quantum Logic , 2000 .

[37]  MacNeille Completions of D-Posets and Effect Algebras , 2000 .

[38]  A. Dvurecenskij,et al.  Pseudoeffect Algebras. I. Basic Properties , 2001 .

[39]  K. Goodearl Partially ordered abelian groups with interpolation , 1986 .