Spin-tensor Meissner currents of ultracold bosonic gas in an optical lattice

We investigate the Meissner currents of interacting bosons subjected to a staggered artificial gauge field in a three-leg ribbon geometry, realized by spin-tensor--momentum coupled spin-1 atoms in a 1D optical lattice. By calculating the current distributions using the state-of-the-art density-matrix renormalization-group method, we find a rich phase diagram containing interesting Meissner and vortex phases, where the currents are mirror symmetric with respect to the {\color{red}middle leg} (i.e., they flow in the same direction on the two boundary legs opposite to that on the middle leg), leading to the spin-tensor type Meissner currents, which is very different from previously observed chiral edge currents under uniform gauge field. The currents are uniform along each leg in the Meissner phase and form vortex-antivortex pairs in the vortex phase. Besides, the system also support a polarized phase that spontaneously breaks the mirror symmetry, whose ground states are degenerate with currents either uniform or forming vortex-antivortex pairs. We also discuss the experimental schemes for probing these phases. Our work provides useful guidance to ongoing experimental research on synthetic flux ribbons and paves the way for exploring novel many-body phenomena therein.

[1]  Jiangfeng Du,et al.  Observation of Spin-Tensor Induced Topological Phase Transitions of Triply Degenerate Points with a Trapped Ion. , 2022, Physical review letters.

[2]  Chaohong Lee,et al.  Unpaired topological triply degenerate point for spin-tensor-momentum-coupled ultracold atoms , 2021, 2112.02323.

[3]  Liangchao Chen,et al.  Experimental realization of spin-tensor momentum coupling in ultracold Fermi gases , 2020, 2003.11829.

[4]  Suotang Jia,et al.  Quantum spiral spin-tensor magnetism , 2019, Physical Review B.

[5]  Hans Peter Büchler,et al.  Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms , 2018, Science.

[6]  M. Chapman,et al.  Exploring Non-Abelian Geometric Phases in Spin-1 Ultracold Atoms. , 2018, Physical review letters.

[7]  Shi-Liang Zhu,et al.  Topological metal bands with double-triple-point fermions in optical lattices , 2018, Physical Review A.

[8]  S. Rachel Interacting topological insulators: a review , 2018, Reports on progress in physics. Physical Society.

[9]  Fan Zhang,et al.  Topological Triply Degenerate Points Induced by Spin-Tensor-Momentum Couplings. , 2017, Physical review letters.

[10]  W. Yi,et al.  Interaction-induced exotic vortex states in an optical lattice clock with spin-orbit coupling , 2017, 1707.02379.

[11]  Chuanwei Zhang,et al.  Spin-Tensor-Momentum-Coupled Bose-Einstein Condensates. , 2017, Physical review letters.

[12]  H. M. Bharath,et al.  Non-Abelian Geometric Phases Carried by the Spin Fluctuation Tensor , 2017, 1702.08564.

[13]  E. Mueller Review of pseudogaps in strongly interacting Fermi gases , 2017, Reports on progress in physics. Physical Society.

[14]  W. Yi,et al.  Symmetry-Protected Topological States for Interacting Fermions in Alkaline-Earth-Like Atoms. , 2016, Physical review letters.

[15]  Wolfgang Ketterle,et al.  A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates , 2016, Nature.

[16]  M. L. Wall,et al.  Spin–orbit-coupled fermions in an optical lattice clock , 2016, Nature.

[17]  M. Rizzi,et al.  Exploring Interacting Topological Insulators with Ultracold Atoms: the Synthetic Creutz-Hubbard Model , 2016, 1612.02996.

[18]  C Clivati,et al.  Synthetic Dimensions and Spin-Orbit Coupling with an Optical Clock Transition. , 2016, Physical review letters.

[19]  Jian-Wei Pan,et al.  Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates , 2015, Science.

[20]  M. Rispoli,et al.  Measuring entanglement entropy in a quantum many-body system , 2015, Nature.

[21]  T. Ozawa,et al.  Four-Dimensional Quantum Hall Effect with Ultracold Atoms. , 2015, Physical review letters.

[22]  R. Fazio,et al.  Magnetic crystals and helical liquids in alkaline-earth fermionic gases , 2015, Nature Communications.

[23]  I. B. Spielman,et al.  Visualizing edge states with an atomic Bose gas in the quantum Hall regime , 2015, Science.

[24]  P. Zoller,et al.  Observation of chiral edge states with neutral fermions in synthetic Hall ribbons , 2015, Science.

[25]  Matthew J. Davis,et al.  Spin-orbit-coupled Bose-Einstein condensates in a one-dimensional optical lattice. , 2014, Physical review letters.

[26]  Hui Zhai,et al.  Degenerate quantum gases with spin–orbit coupling: a review , 2014, Reports on progress in physics. Physical Society.

[27]  J. Barreiro,et al.  Observation of chiral currents with ultracold atoms in bosonic ladders , 2014, Nature Physics.

[28]  S. Kokkelmans,et al.  Feshbach resonances in ultracold gases , 2014, 1401.2945.

[29]  M. Lewenstein,et al.  Synthetic gauge fields in synthetic dimensions. , 2013, Physical review letters.

[30]  Yu-An Chen,et al.  Density matrix renormalization group , 2014 .

[31]  K. Le Hur,et al.  Bosonic Mott insulator with Meissner currents. , 2013, Physical review letters.

[32]  Leon Balents,et al.  Identifying topological order by entanglement entropy , 2012, Nature Physics.

[33]  Tarik Yefsah,et al.  Spin-injection spectroscopy of a spin-orbit coupled Fermi gas. , 2012, Physical review letters.

[34]  P. Zoller,et al.  Measuring entanglement growth in quench dynamics of bosons in an optical lattice. , 2012, Physical review letters.

[35]  E. Demler,et al.  Measuring entanglement entropy of a generic many-body system with a quantum switch. , 2012, Physical review letters.

[36]  Hui Zhai,et al.  Spin-orbit coupled degenerate Fermi gases. , 2012, Physical review letters.

[37]  M. Lewenstein,et al.  Quantum simulation of an extra dimension. , 2011, Physical review letters.

[38]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[39]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[40]  Matthew B Hastings,et al.  Measuring Renyi entanglement entropy in quantum Monte Carlo simulations. , 2010, Physical review letters.

[41]  Xiao-Gang Wen,et al.  Topological entanglement Rényi entropy and reduced density matrix structure. , 2009, Physical review letters.

[42]  Xiao-Liang Qi,et al.  Topological Mott insulators. , 2007, Physical review letters.

[43]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[44]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[45]  R. Fazio,et al.  Phase diagram of spin-1 bosons on one-dimensional lattices. , 2005, Physical review letters.

[46]  S. White,et al.  The one-dimensional Bose-Hubbard Model with nearest-neighbor interaction , 1999, cond-mat/9906019.

[47]  A. Geim,et al.  Paramagnetic Meissner effect in small superconductors , 1998, Nature.

[48]  T. Ho Spinor Bose Condensates in Optical Traps , 1998, cond-mat/9803231.

[49]  K. Machida,et al.  Bose-Einstein Condensation with Internal Degrees of Freedom in Alkali Atom Gases , 1998, cond-mat/9803160.

[50]  J. Freericks,et al.  Strong-coupling expansions for the pure and disordered Bose-Hubbard model. , 1995, Physical review. B, Condensed matter.

[51]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[52]  Kock,et al.  Paramagnetic Meissner effect in Bi high-temperature superconductors. , 1992, Physical review letters.

[53]  P. Hannaford,et al.  Experimental realization of a two-dimensional synthetic spin-orbit coupling in ultracold Fermi gases , 2022 .