The enzymes of β-lactam biosynthesis.

The β-lactam antibiotics and related β-lactamase inhibitors are amongst the most important small molecules in clinical use. Most, but not all, β-lactams including penicillins, cephalosporins, and clavulanic acid are produced via fermentation or via modification of fermented intermediates, with important exceptions being the carbapenems and aztreonam. The desire for more efficient routes to existing antibiotics and for access to new and synthetically challenging ones stimulates continued interest in β-lactam biosynthesis. We review knowledge of the pathways leading to β-lactam antibiotics focusing on the mechanisms, structures and biocatalytic applications of the enzymes involved.

[1]  A. Hädener,et al.  Further Studies on the Biosynthesis of Tabtoxin (Wildfire Toxin): Incorporation of [2,3‐13C2]Pyruvate into the β‐Lactam Moiety , 1990 .

[2]  J. Martín,et al.  Delta-1-piperideine-6-carboxylate dehydrogenase, a new enzyme that forms alpha-aminoadipate in Streptomyces clavuligerus and other cephamycin C-producing actinomycetes. , 1997, The Biochemical journal.

[3]  D. Ryu,et al.  Substrate specificity of nonribosomal peptide synthetase modules responsible for the biosynthesis of the oligopeptide moiety of cephabacin in Lysobacter lactamgenus. , 2006, FEMS microbiology letters.

[4]  Sylvie Lautru,et al.  Discovery of a new peptide natural product by Streptomyces coelicolor genome mining , 2005, Nature chemical biology.

[5]  C. Schofield,et al.  δ‐L‐(α‐Aminoadipoyl)‐L‐cysteinyl‐D‐valine synthetase: the order of peptide bond formation and timing of the epimerisation reaction , 1995 .

[6]  J. Baldwin,et al.  The biosynthesis of penicillins and cephalosporins. , 1988, Natural product reports.

[7]  J. Baldwin,et al.  Factors affecting the isopenicillin N synthetase reaction. , 1988, The Biochemical journal.

[8]  C. Townsend New reactions in clavulanic acid biosynthesis. , 2002, Current opinion in chemical biology.

[9]  J. Birnbaum,et al.  Thienamycin: development of imipenem-cilastatin , 1983 .

[10]  C. Walsh,et al.  Dynamic thiolation–thioesterase structure of a non-ribosomal peptide synthetase , 2008, Nature.

[11]  K. Snader,et al.  CHLOROCARDICIN, A MONOCYCLIC β-LACTAM FROM A STREPTOMYCES SP. , 1985 .

[12]  Andriy Kovalchuk,et al.  Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum , 2008, Nature Biotechnology.

[13]  R. Durbin,et al.  Characterization of chlorosis-inducing toxins from a plant pathogenic Pseudomonas Sp. , 1972, Biochimica et biophysica acta.

[14]  Monica Mantri,et al.  Autocatalysed oxidative modifications to 2‐oxoglutarate dependent oxygenases , 2012, The FEBS journal.

[15]  A. Brown,et al.  The biosynthetic implications of acetate and glutamate incorporation into (3R,5R)-carbapenam-3-carboxylic acid and (5R)-carbapen-2-em-3-carboxylic acid by Serratia sp. , 1988, The Journal of antibiotics.

[16]  Chi-Tang Ho,et al.  Synthesis of 1-piperideine-6-carboxylic acid produced by L-lysine-epsilon-aminotransferase from the Streptomyces clavuligerus gene expressed in Escherichia coli. , 2007, Journal of agricultural and food chemistry.

[17]  C. Townsend,et al.  Mutational Analysis and Characterization of Nocardicin C-9′ Epimerase* , 2004, Journal of Biological Chemistry.

[18]  I. Andersson,et al.  Substrate specificity of recombinant Streptomyces clavuligerus deacetoxycephalosporin C synthase. , 1994 .

[19]  Timothy R. Walsh,et al.  Metallo-β-Lactamases: the Quiet before the Storm? , 2005, Clinical Microbiology Reviews.

[20]  J. Blumbach,et al.  Recent Developments in the Field of β‐Lactam Antibiotics , 1985 .

[21]  P. Rahimi,et al.  Free-radical cyanation. Novel free-radical reaction of methyl cyanoformate or cyanogen with 2,4-dimethylpentane , 1979 .

[22]  P. Deslongchamps,et al.  Stereoelectronic effects in organic chemistry , 1983 .

[23]  H. Aoki,et al.  Isolation and characterization of nocardicin B. , 1976, The Journal of antibiotics.

[24]  S. Box,et al.  Olivanic acids, a family of beta-lactam antibiotics with beta-lactamase inhibitory properties produced by Streptomyces species. II. Isolation and characterisation of the olivanic acids MM 4550, MM 13902 and MM 17880 from Streptomyces olivaceus. , 1979, The Journal of antibiotics.

[25]  J. Elkins,et al.  Crystallographic studies on the reaction of isopenicillin N synthase with an unsaturated substrate analogue. , 2003, Organic & biomolecular chemistry.

[26]  A. Stindl,et al.  Epimerization of the D-valine portion in the biosynthesis of actinomycin D. , 1994, Biochemistry.

[27]  J. Blount,et al.  Antimetabolites produced by microorganisms. XII (S)-alanyl-3-[alpha-(S)-chloro-3-(S)-hydroxy 2-oxo-3-azetidinylmethyl]-(S)-alanine, a new beta-lactam containing natural product. , 1975, The Journal of antibiotics.

[28]  M. Okabe,et al.  PS-5, a new beta-lactam antibiotic. I. Taxonomy of the producing organism, isolation and physico-chemical properties. , 1979, Journal of antibiotics (Tokyo. 1968).

[29]  H. Imanaka,et al.  NOCARDICIN A, A NEW MONOCYCLIC β-LACTAM ANTIBIOTIC , 1976 .

[30]  R. Fingerhut,et al.  Purification and characterization of an alpha-methylacyl-CoA racemase from human liver. , 1995, European journal of biochemistry.

[31]  M. Freeman,et al.  Monocyclic β-Lactams Are Selective, Mechanism-Based Inhibitors of Rhomboid Intramembrane Proteases , 2010, ACS chemical biology.

[32]  G. Salmond,et al.  Molecular genetics of carbapenem antibiotic biosynthesis , 2004, Antonie van Leeuwenhoek.

[33]  Yvonne Kallberg,et al.  Short-chain dehydrogenases/reductases (SDRs). , 2002, European journal of biochemistry.

[34]  J. Martín,et al.  Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. , 1992, Annual review of microbiology.

[35]  C. Schofield,et al.  Structural studies on human 2-oxoglutarate dependent oxygenases. , 2010, Current opinion in structural biology.

[36]  J. S. Wells,et al.  Monocyclic β-lactam antibiotics produced by bacteria , 1981, Nature.

[37]  Roberto A Chica,et al.  Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. , 2005, Current opinion in biotechnology.

[38]  J. Tyler,et al.  N-acyl derivatives of clavaminic acid produced by a mutant of Streptomyces clavuligerus , 1988 .

[39]  D. Harding,et al.  Stereoselective C-C bond formation catalysed by engineered carboxymethylproline synthases. , 2011, Nature chemistry.

[40]  R. Breitling,et al.  Genome‐wide gene expression changes in an industrial clavulanic acid overproduction strain of Streptomyces clavuligerus , 2011, Microbial biotechnology.

[41]  Michael G. Rossmann,et al.  Chemical and biological evolution of a nucleotide-binding protein , 1974, Nature.

[42]  D. Woolley,et al.  Isolation of the phytopathogenic toxin of Pseudomonas tabaci, an antagonist of methionine. , 1952, The Journal of biological chemistry.

[43]  James R. Miller,et al.  The beta-lactam biosynthesis genes for isopenicillin N epimerase and deacetoxycephalosporin C synthetase are expressed from a single transcript in Streptomyces clavuligerus , 1990, Journal of bacteriology.

[44]  J. Martín,et al.  Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum , 1997, Applied Microbiology and Biotechnology.

[45]  C. Townsend,et al.  Definition of the Common and Divergent Steps in Carbapenem β‐Lactam Antibiotic Biosynthesis , 2011, Chembiochem : a European journal of chemical biology.

[46]  M. Sebaihia,et al.  Analysis of bacterial carbapenem antibiotic production genes reveals a novel β‐lactam biosynthesis pathway , 1996, Molecular microbiology.

[47]  A. J. Eglington,et al.  Structure elucidation of MM 17880, a new fused β-lactam antibiotic isolated from Streptomyces olivaceus; a mild β-lactam degradation reaction , 1977 .

[48]  M. Marahiel,et al.  Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. , 2005, Chemical reviews.

[49]  J. Barredo,et al.  The clavulanic acid biosynthetic cluster of Streptomyces clavuligerus: genetic organization of the region upstream of the car gene. , 2002, Microbiology.

[50]  C. Schofield,et al.  Synthesis of deuterium labelled L- and D-glutamate semialdehydes and their evaluation as substrates for carboxymethylproline synthase (CarB)--implications for carbapenem biosynthesis. , 2005, Chemical communications.

[51]  A. Demain Inhibition of penicillin formation by lysine. , 1957, Archives of biochemistry and biophysics.

[52]  D. Hendlin,et al.  L-lysine epsilon-aminotransferase involved in cephamycin C synthesis in Streptomyces lactamdurans. , 1980, Antimicrobial Agents and Chemotherapy.

[53]  J. Pezzuto,et al.  Activity-guided isolation of steroidal alkaloid antiestrogen-binding site inhibitors from Pachysandra procumbens. , 1998, Journal of natural products.

[54]  O. Singh,et al.  The realm of penicillin G acylase in β-lactam antibiotics , 2008 .

[55]  Zihe Rao,et al.  Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for beta-lactam acetylation. , 2003, Journal of molecular biology.

[56]  E V Koonin,et al.  Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity. Application of an iterative approach to database search. , 1994, Journal of molecular biology.

[57]  Tomasz Borowski,et al.  Mechanism of dioxygen activation in 2-oxoglutarate-dependent enzymes: a hybrid DFT study. , 2004, Chemistry.

[58]  C. Townsend,et al.  Biosynthesis of Clavulanic Acid: Origin of the C3 Unit , 1985 .

[59]  C. Walsh,et al.  Biosynthetic alanine racemase of Salmonella typhimurium: purification and characterization of the enzyme encoded by the alr gene. , 1986, Biochemistry.

[60]  M. Groenen,et al.  Two genes involved in penicillin biosynthesis are linked in a 5.1 kb SalI fragment in the genome of Penicillium chrysogenum , 1989, Molecular and General Genetics MGG.

[61]  C. Schofield,et al.  The enzymology of clavam and carbapenem biosynthesis. , 2005, Chemical communications.

[62]  S. Jensen,et al.  A comparison of the clavam biosynthetic gene clusters in Streptomyces antibioticus Tü1718 and Streptomyces clavuligerus. , 2012, Canadian journal of microbiology.

[63]  P. Roach,et al.  The reaction cycle of isopenicillin N synthase observed by X-ray diffraction , 1999, Nature.

[64]  T. King,et al.  Clavulanic acid and its derivatives. Structure elucidation of clavulanic acid and the preparation of dihydroclavulanic acid, isoclavulanic acid, esters and related oxidation products , 1984 .

[65]  Jack D. Dunitz,et al.  Geometrical reaction coordinates. II. Nucleophilic addition to a carbonyl group , 1973 .

[66]  S. Atanassova,et al.  Transgenic tobacco cultivars resistant to Pseudomonas syringae pv. tabaci , 1998, Theoretical and Applied Genetics.

[67]  J. Rabenhorst,et al.  Biological properties and mode of action of clavams , 1987, Archives of Microbiology.

[68]  J. Martín,et al.  The isopenicillin-N acyltransferase of Penicillium chrysogenum has isopenicillin-N amidohydrolase, 6-aminopenicillanic acid acyltransferase and penicillin amidase activities, all of which are encoded by the single penDE gene. , 1993, European journal of biochemistry.

[69]  C. Townsend,et al.  Asymmetric, biogenetically modeled synthesis of (-)-3-aminonocardicinic acid , 1981 .

[70]  C. Kao,et al.  Sulfur metabolism in the biosynthesis of monobactams , 1983, Antimicrobial Agents and Chemotherapy.

[71]  T. Sim,et al.  A complete library of amino acid alterations at R306 in Streptomyces clavuligerus deacetoxycephalosporin C synthase demonstrates its structural role in the ring‐expansion activity , 2008, Proteins.

[72]  J. Martín,et al.  Alpha-aminoadipyl-cysteinyl-valine synthetases in beta-lactam producing organisms. From Abraham's discoveries to novel concepts of non-ribosomal peptide synthesis. , 2000, The Journal of antibiotics.

[73]  H. Sakagami,et al.  Diastereoselective synthesis of 3,5-trans-(+)-(3R,5R)-3-carbomethoxycarbapenam from 3-hydroxypyridine: questioning the stereochemical assignment of the natural product , 2002 .

[74]  M. Baker,et al.  Site-specific mutagenesis of Drosophila alcohol dehydrogenase: evidence for involvement of tyrosine-152 and lysine-156 in catalysis. , 1993, Biochemistry.

[75]  J. Nishikawa,et al.  PB-5266 A, B and C, new monobactams. II. Physico-chemical properties and chemical structures. , 1987, The Journal of antibiotics.

[76]  F. Becker,et al.  Asymmetric synthesis of anticancer beta-lactams via Staudinger reaction: utilization of chiral ketene from carbohydrate. , 2010, European journal of medicinal chemistry.

[77]  C. Schofield,et al.  Synthesis of regio- and stereoselectively deuterium-labelled derivatives of L-glutamate semialdehyde for studies on carbapenem biosynthesis. , 2009, Organic and biomolecular chemistry.

[78]  R. Matthews,et al.  Stereochemical analysis of the methyl transfer catalyzed by cobalamin-dependent methionine synthase from Escherichia coli B , 1986 .

[79]  M. Nishino,et al.  PS-6 and PS-7, new beta-lactam antibiotics. Isolation, physicochemical properties and structures. , 1980, The Journal of antibiotics.

[80]  G. Rolinson,et al.  Synthesis of Penicillin: 6-Aminopenicillanic Acid in Penicillin Fermentations , 1959, Nature.

[81]  D. Koshland,et al.  Insights into the serine protease mechanism from atomic resolution structures of trypsin reaction intermediates. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[82]  T. Isogai,et al.  Construction of a 7-Aminocephalosporanic Acid (7ACA) Biosynthetic Operon and Direct Production of 7ACA in Acremonium Chrysogenum , 1991, Bio/Technology.

[83]  Christopher J. Schofield,et al.  The Mechanism of ACV Synthetase. , 1997, Chemical reviews.

[84]  A. Demain,et al.  Cloning of a Streptomyces clavuligerus DNA fragment encoding the cephalosporin 7 alpha-hydroxylase and its expression in Streptomyces lividans , 1993, Antimicrobial Agents and Chemotherapy.

[85]  Axel A. Brakhage,et al.  Molecular Regulation of β-Lactam Biosynthesis in Filamentous Fungi , 1998, Microbiology and Molecular Biology Reviews.

[86]  M. Fawaz,et al.  The ATP-grasp enzymes. , 2011, Bioorganic chemistry.

[87]  B. Bycroft,et al.  The isolation and characterisation of (3R,5R)- and (3S,5R)-carbapenam-3-carboxylic acid from Serratia and Erwinia species and their putative biosynthetic role , 1987 .

[88]  A. L. Ferreira,et al.  Gastric and Duodenal Antiulcer Activity of Alkaloids: A Review , 2008, Molecules.

[89]  C. Schofield,et al.  Carboxymethylproline Synthase (CarB), an Unusual Carbon-Carbon Bond-forming Enzyme of the Crotonase Superfamily Involved in Carbapenem Biosynthesis* , 2004, Journal of Biological Chemistry.

[90]  T. Aldrich,et al.  Cloning, characterization, and use in strain improvement of the Cephalosporium acremonium gene cefG encoding acetyl transferase , 2004, Current Genetics.

[91]  Carlos García-Estrada,et al.  Transcriptional and bioinformatic analysis of the 56.8 kb DNA region amplified in tandem repeats containing the penicillin gene cluster in Penicillium chrysogenum. , 2006, Fungal genetics and biology : FG & B.

[92]  F. Quiocho,et al.  Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes , 1996, Molecular microbiology.

[93]  Michael Y. Galperin,et al.  A diverse superfamily of enzymes with ATP‐dependent carboxylate—amine/thiol ligase activity , 1997, Protein science : a publication of the Protein Society.

[94]  B. Spratt Resistance to antibiotics mediated by target alterations. , 1994, Science.

[95]  T. Sim,et al.  PCR cloning, heterologous expression, and characterization of isopenicillin N synthase from Streptomyces lipmanii NRRL 3584. , 2000, Canadian journal of microbiology.

[96]  G N Murshudov,et al.  The structural basis of sequence-independent peptide binding by OppA protein. , 1994, Science.

[97]  T. Mori,et al.  New β-Lactam Antibiotics, Carpetimycins C and D , 1983 .

[98]  D. Shiffman,et al.  High level expression in Escherichia coli of isopenicillin N synthase genes from Flavobacterium and Streptomyces, and recovery of active enzyme from inclusion bodies. , 1991, FEMS microbiology letters.

[99]  Kazuki Saito,et al.  Mechanistic Studies on Three 2-Oxoglutarate-dependent Oxygenases of Flavonoid Biosynthesis , 2004, Journal of Biological Chemistry.

[100]  G. Challis,et al.  Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. , 2000, Chemistry & biology.

[101]  J. Frère,et al.  The beta-lactamase cycle: a tale of selective pressure and bacterial ingenuity. , 1999, Natural product reports.

[102]  J. Elkins,et al.  A device for the high-pressure oxygenation of protein crystals. , 2002, Analytical biochemistry.

[103]  James R. Evans,et al.  Structures of three novel β-lactams isolated from Streptomyces clavuligerus , 1979 .

[104]  Micheal C. Wilson,et al.  Beyond ethylmalonyl-CoA: the functional role of crotonyl-CoA carboxylase/reductase homologs in expanding polyketide diversity. , 2012, Natural product reports.

[105]  Ramanathan Nagarajan,et al.  Beta-lactam antibiotics from Streptomyces. , 1971, Journal of the American Chemical Society.

[106]  S. Schuster,et al.  Kinetic mechanism of Escherichia coli asparagine synthetase B. , 1998, Biochemistry.

[107]  Zhou Yu,et al.  Cloning and characterization of a novel CoA-ligase gene from Penicillium chrysogenum , 2011, Folia Microbiologica.

[108]  W. Yeh,et al.  Deacetoxycephalosporin C hydroxylase of Streptomyces clavuligerus. Purification, characterization, bifunctionality, and evolutionary implication. , 1991, The Journal of biological chemistry.

[109]  Perry A. Frey,et al.  The Radical SAM Superfamily , 2008 .

[110]  A. Brown,et al.  Structures of olivanic acid derivatives MM 22380, MM 22381, MM 22382 and MM 22383; four new antibiotics isolated from Streptomyces olivaceus. , 1979, The Journal of antibiotics.

[111]  M. de Pedro,et al.  Peptidoglycan structure and architecture. , 2008, FEMS microbiology reviews.

[112]  A. J. Eglington,et al.  Structures of olivanic acid derivatives MM 4550 and MM 13902; two new, fused β-lactams isolated from Streptomyces olivaceus , 1977 .

[113]  Y. Fujisawa,et al.  Role of Acetyl CoA: Deacetylcephalosporin C Acetyltransferase in Cephalosporin C Biosynthesis by Cephalosporium acremonium , 1975 .

[114]  W. König,et al.  The revised structure of the antibiotic Tü 1718 B confirmed by synthesis , 1994 .

[115]  S. Jensen,et al.  Investigation of the Streptomyces clavuligerus Cephamycin C Gene Cluster and Its Regulation by the CcaR Protein , 1998, Journal of bacteriology.

[116]  J. Elkins,et al.  X-ray crystal structure of ornithine acetyltransferase from the clavulanic acid biosynthesis gene cluster. , 2005, The Biochemical journal.

[117]  R. Bonomo,et al.  Three Decades of β-Lactamase Inhibitors , 2010, Clinical Microbiology Reviews.

[118]  K. Soda,et al.  Role of Lysine 39 of Alanine Racemase from Bacillus stearothermophilus That Binds Pyridoxal 5′-Phosphate , 1999, The Journal of Biological Chemistry.

[119]  C. Townsend,et al.  Non-heme iron oxygenases generate natural structural diversity in carbapenem antibiotics. , 2010, Journal of the American Chemical Society.

[120]  C. Reading,et al.  Structure-Activity Relationships Amongst β-Lactamase Inhibitors , 1986 .

[121]  J. S. Wells,et al.  SQ 26,180, a novel monobactam. I Taxonomy, fermentation and biological properties. , 1982, The Journal of antibiotics.

[122]  K. Matsuyama,et al.  Molecular cloning of acetyl coenzyme A: deacetylcephalosporin C o-acetyltransferase cDNA from Acremonium chrysogenum: sequence and expression of catalytic activity in yeast. , 1992, Biochemical and biophysical research communications.

[123]  C. Townsend,et al.  Biosynthesis of clavulanic acid: origin of the C5 unit , 1985 .

[124]  S. Jensen,et al.  Molecular analysis of a beta-lactam resistance gene encoded within the cephamycin gene cluster of Streptomyces clavuligerus , 1996, Journal of bacteriology.

[125]  R. Durbin,et al.  The isolation and properties of a tabtoxin-hydrolysing aminopeptidase from the periplasm of Pseudomonas syringae pv. tabaci , 1986 .

[126]  C. Schofield,et al.  Evidence that Thienamycin Biosynthesis Proceeds via C‐5 Epimerization: ThnE Catalyzes the Formation of (2S,5S)‐trans‐Carboxymethylproline , 2009, Chembiochem : a European journal of chemical biology.

[127]  C. Townsend Structural studies of natural product biosynthetic proteins. , 1997, Chemistry & biology.

[128]  R. Field,et al.  Isolation and partial characterisation of ACV synthetase from Cephalosporium acremonium and Streptomyces clavuligerus. Evidence for the presence of phosphopantothenate in ACV synthetase. , 1991, The Journal of antibiotics.

[129]  J. Williamson,et al.  The Biosynthesis of Thienamycin and Related Carbapenems , 1986 .

[130]  H. von Döhren,et al.  A nonribosomal system of peptide biosynthesis. , 1996, European journal of biochemistry.

[131]  R. Bonomo,et al.  Inhibition of the class C beta-lactamase from Acinetobacter spp.: insights into effective inhibitor design. , 2010, Biochemistry.

[132]  R. Mueller,et al.  Chemistry of cephalosporin antibiotics. XV. Transformations of penicillin sulfoxide. A synthesis of cephalosporin compounds. , 1969, Journal of the American Chemical Society.

[133]  J. Tyler,et al.  Evidence that the immediate biosynthetic precursor of clavulanic acid is its N-aldehyde analogue , 1994 .

[134]  M. D. Lloyd,et al.  A substrate analogue study on clavaminic acid synthase: possible clues to the biosynthetic origin of proclavamic acid , 1993 .

[135]  Arnold L. Demain,et al.  The β-lactam antibiotics: past, present, and future , 2004, Antonie van Leeuwenhoek.

[136]  T. Kato,et al.  Isolation of chitinovorin D. , 1985, The Journal of antibiotics.

[137]  S. Jensen,et al.  pcd Mutants of Streptomyces clavuligerus Still Produce Cephamycin C , 2007, Journal of bacteriology.

[138]  J. Sutherland,et al.  A heuristic approach to the analysis of enzymic catalysis: reaction of delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-alpha-aminobutyrate and delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-allylglycine catalyzed by isopenicillin N synthase isozymes. , 1995, Biochemistry.

[139]  Mohamed A. Marahiel,et al.  Chemoenzymatic and Template-Directed Synthesis of Bioactive Macrocyclic Peptides , 2006, Microbiology and Molecular Biology Reviews.

[140]  J. Tözsér,et al.  Beta-lactam compounds as apparently uncompetitive inhibitors of HIV-1 protease. , 2005, Bioorganic & medicinal chemistry letters.

[141]  S. Box,et al.  A new olivanic acid derivative produced by Streptomyces olivaceus: isolation and structural studies. , 1982, The Journal of antibiotics.

[142]  Y. Fujisawa,et al.  Occurrence of a new cephalosporoate in a culture broth of a Cephalosporium acremonium mutant. , 1975, The Journal of antibiotics.

[143]  N H Horowitz,et al.  On the Evolution of Biochemical Syntheses. , 1945, Proceedings of the National Academy of Sciences of the United States of America.

[144]  J. Martín,et al.  Arginine boxes and the argR gene in Streptomyces clavuligerus: evidence for a clear regulation of the arginine pathway , 1997, Molecular microbiology.

[145]  C. Townsend,et al.  Purification and characterization of clavaminate synthase from Streptomyces clavuligerus: an unusual oxidative enzyme in natural product biosynthesis. , 1990, Biochemistry.

[146]  D. Ryu,et al.  Biosynthetic pathway of cephabacins in Lysobacter lactamgenus: molecular and biochemical characterization of the upstream region of the gene clusters for engineering of novel antibiotics. , 2001, Metabolic engineering.

[147]  S. Tsubotani,et al.  Structure of lactivicin, an antibiotic having a new nucleus and similar biological activities to β-lactam antibiotics , 1986 .

[148]  C. Robinson,et al.  ORF6 from the clavulanic acid gene cluster of Streptomyces clavuligerus has ornithine acetyltransferase activity. , 2002, European journal of biochemistry.

[149]  J. Sohng,et al.  Improvement of clavulanic acid production in Streptomyces clavuligerus by genetic manipulation of structural biosynthesis genes , 2011, Biotechnology Letters.

[150]  S. Tsubotani,et al.  Cephabacins, new cephem antibiotics of bacterial origin. III. Structural determination. , 1984, The Journal of antibiotics.

[151]  Mindy I. Davis,et al.  Geometric and electronic structure/function correlations in non-heme iron enzymes. , 2000, Chemical reviews.

[152]  J. Hajdu,et al.  X-ray Structure of a Serine Protease Acyl-Enzyme Complex at 0.95-Å Resolution* , 2002, The Journal of Biological Chemistry.

[153]  A. Demain,et al.  Do we need new antibiotics? The search for new targets and new compounds , 2010, Journal of Industrial Microbiology & Biotechnology.

[154]  Chun-Song Chua,et al.  Directed evolution and rational approaches to improving Streptomyces clavuligerus deacetoxycephalosporin C synthase for cephalosporin production , 2009, Journal of Industrial Microbiology & Biotechnology.

[155]  P. Liras Biosynthesis and molecular genetics of cephamycins , 2004, Antonie van Leeuwenhoek.

[156]  B. Bycroft,et al.  The incorporation of DL-[4-2H2,5-13C] ornithine into clavulanic acid and N-acetylglycylclavaminic acid , 1988 .

[157]  J. Martín,et al.  Purification and characterization of the isopenicillin N synthase of Streptomyces lactamdurans. , 1988, Journal of general microbiology.

[158]  W. M. Kirby EXTRACTION OF A HIGHLY POTENT PENICILLIN INACTIVATOR FROM PENICILLIN RESISTANT STAPHYLOCOCCI , 1944, Science.

[159]  M. D. Lloyd,et al.  Structure of a cephalosporin synthase , 1998, Nature.

[160]  K. Douglas Elimination-addition pathways for thiol esters , 1986 .

[161]  J. Martín,et al.  Conversion of phenylacetyl‐cysteinyl‐valine in vitro into penicillin G by isopenicillin N synthase of Streptomyces lactamdurans , 1986 .

[162]  M. D. Lloyd,et al.  Alteration of the Co-substrate Selectivity of Deacetoxycephalosporin C Synthase , 2001, The Journal of Biological Chemistry.

[163]  T. Ishikura,et al.  Studies on the biosynthesis of carbapenem antibiotics. II. Isolation and functions of a specific acylase involved in the depantothenylation of the OA-6129 compounds. , 1984, The Journal of antibiotics.

[164]  B. Kessler,et al.  Thioester hydrolysis and C-C bond formation by carboxymethylproline synthase from the crotonase superfamily. , 2008, Angewandte Chemie.

[165]  Paulette Charlier,et al.  The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. , 2008, FEMS microbiology reviews.

[166]  A. K. Drummond Bioactive metabolites from microorganisms , 2009 .

[167]  D. Westlake,et al.  Production of the penicillin precursor δ‐(L‐α‐aminoadipyl)‐L‐cysteinyl‐D‐valine (ACV) by cell‐free extracts from Streptomyces clavuligerus , 1988 .

[168]  T. Sim,et al.  Molecular studies on isopenicillin N synthases , 2000, Applied Microbiology and Biotechnology.

[169]  A. Coates,et al.  Novel approaches to developing new antibiotics for bacterial infections , 2007, British journal of pharmacology.

[170]  U. Bornscheuer,et al.  Improved biocatalysts by directed evolution and rational protein design. , 2001, Current opinion in chemical biology.

[171]  S. Gould,et al.  Studies on the formation and incorporation of streptolidine in the biosynthesis of the peptidyl nucleoside antibiotic streptothricin F. , 2002, The Journal of organic chemistry.

[172]  Jason W. Labonte,et al.  Engineering the synthetic potential of β-lactam synthetase and the importance of catalytic loop dynamics. , 2012, MedChemComm.

[173]  R. Durbin,et al.  Inhibition of Glutamine Synthetase from Pea by Tabtoxinine-β-lactam , 1983 .

[174]  F. Becker,et al.  Synthesis of anticancer β-lactams: mechanism of action , 2004 .

[175]  Jing Liu,et al.  Molecular cloning and functional identification of a novel phenylacetyl-CoA ligase gene from Penicillium chrysogenum. , 2007, Biochemical and biophysical research communications.

[176]  J. Hajdu,et al.  Anaerobic crystallisation of an isopenicillin N synthase.Fe(II).substrate complex demonstrated by X-ray studies. , 1996, European journal of biochemistry.

[177]  S. Azuma,et al.  Studies on the OA-6129 group of antibiotics, new carbapenem compounds. I. Taxonomy, isolation and physical properties. , 1982, The Journal of antibiotics.

[178]  M. Okuhara,et al.  Natural beta-lactam antibiotics. , 1980, Annual Review of Microbiology.

[179]  R. Wolfenden,et al.  Glutamate gamma-semialdehyde as a natural transition state analogue inhibitor of Escherichia coli glucosamine-6-phosphate synthase. , 1995, Biochemistry.

[180]  Jens Nielsen,et al.  Metabolic engineering of -lactam production , 2003 .

[181]  M. Turner,et al.  An adenosine triphosphate-dependent carbamoylphosphate--3-hydroxymethylcephem O-carbamoyltransferase from Streptomyces clavuligerus. , 1980, The Biochemical journal.

[182]  Emilio Alvarez,et al.  Large amplification of a 35-kb DNA fragment carrying two penicillin biosynthetic genes in high penicillin producing strains of Penicillium chrysogenum , 1989, Current Genetics.

[183]  J. Martín,et al.  Deletion of the pyc Gene Blocks Clavulanic Acid Biosynthesis Except in Glycerol-Containing Medium: Evidence for Two Different Genes in Formation of the C3 Unit , 1999, Journal of bacteriology.

[184]  Three-dimensional structures of enzymes useful for beta-lactam antibiotic production. , 2004, Current opinion in biotechnology.

[185]  M. D. Lloyd,et al.  The role of arginine residues in substrate binding and catalysis by deacetoxycephalosporin C synthase. , 2002, European journal of biochemistry.

[186]  C. Townsend,et al.  Elucidation of the order of oxidations and identification of an intermediate in the multistep clavaminate synthase reaction. , 1991, Biochemistry.

[187]  T. Sim,et al.  C-terminus modification of Streptomyces clavuligerus deacetoxycephalosporin C synthase improves catalysis with an expanded substrate specificity. , 2002, Biochemical and biophysical research communications.

[188]  V. Shanmugasundaram,et al.  Distinctive attributes of β-lactam target proteins in Acinetobacter baumannii relevant to development of new antibiotics. , 2011, Journal of the American Chemical Society.

[189]  T. Brown,et al.  Crystallographic and mass spectrometric analyses of a tandem GNAT protein from the clavulanic acid biosynthesis pathway , 2010, Proteins.

[190]  C. Schofield,et al.  L-delta-(alpha-Aminoadipoyl)-L-cysteinyl-D-valine synthetase: thioesterification of valine is not obligatory for peptide bond formation. , 1997, Biochemistry.

[191]  G. Cohen,et al.  The thioredoxin system of Penicillium chrysogenum and its possible role in penicillin biosynthesis , 1994, Journal of bacteriology.

[192]  C. Townsend,et al.  Substrate Binding to the α-Ketoglutarate-Dependent Non-Heme Iron Enzyme Clavaminate Synthase 2: Coupling Mechanism of Oxidative Decarboxylation and Hydroxylation , 1998 .

[193]  C. Townsend,et al.  Observation of an acryloyl-thiamin diphosphate adduct in the first step of clavulanic acid biosynthesis. , 2007, Journal of the American Chemical Society.

[194]  C. Méndez,et al.  Identification of transcriptional activators for thienamycin and cephamycin C biosynthetic genes within the thienamycin gene cluster from Streptomyces cattleya , 2008, Molecular microbiology.

[195]  M. D. Lloyd,et al.  α‐Methylacyl‐CoA racemase – an ‘obscure’ metabolic enzyme takes centre stage , 2008, The FEBS journal.

[196]  S. Jensen,et al.  Biosynthesis and Molecular Genetics of Clavulanic Acid , 2004, Antonie van Leeuwenhoek.

[197]  J. Baldwin,et al.  Use of the cyclopropylcarbinyl test to detect a radical-like intermediate in penicillin biosynthesis , 1987 .

[198]  J. Lipscomb,et al.  VTVH-MCD and DFT studies of thiolate bonding to [FeNO]7/[FeO2]8 complexes of isopenicillin N synthase: substrate determination of oxidase versus oxygenase activity in nonheme Fe enzymes. , 2007, Journal of the American Chemical Society.

[199]  I. Massova,et al.  Structural and mechanistic aspects of evolution of beta-lactamases and penicillin-binding proteins. , 1999, Current pharmaceutical design.

[200]  C. Sih,et al.  Synthesis and incorporation of (2S,3S)-valine-4 13C into .beta.-lactam antibiotics , 1973 .

[201]  J. Martín,et al.  The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[202]  J. S. Wells,et al.  SQ 27,860, a simple carbapenem produced by species of Serratia and Erwinia. , 1982, The Journal of antibiotics.

[203]  K. H. Baggaley,et al.  Isolation of two novel intracellular β-lactams and a novel dioxygenase cyclising enzyme from Streptomyces clavuligerus , 1987 .

[204]  J. Corse,et al.  Biosynthesis of penicillins; preparation and evaluation of precursors for new penicillins. , 1948, The Journal of biological chemistry.

[205]  T. Kawasaki,et al.  Structures and absolute configurations of carpetimycins A and B. , 1981, The Journal of antibiotics.

[206]  F. A. Robinson Chemistry of penicillin. , 1947, The Analyst.

[207]  K. Wilson,et al.  Northienamycin and 8-epi-thienamycin, new carbapenems from Streptomyces cattleya. , 1983, The Journal of antibiotics.

[208]  Yang Wang,et al.  Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA , 2011, Science.

[209]  M. D. Lloyd,et al.  Substrate analogue studies on clavaminic acid synthase , 1993 .

[210]  Geoffrey J. Barton,et al.  Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes , 1995, Nature.

[211]  C. Méndez,et al.  Mutational Analysis of the Thienamycin Biosynthetic Gene Cluster from Streptomyces cattleya , 2011, Antimicrobial Agents and Chemotherapy.

[212]  J. Strominger,et al.  Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. , 1983, Annual review of biochemistry.

[213]  S. Jensen,et al.  Early Cephamycin Biosynthetic Genes Are Expressed from a Polycistronic Transcript in Streptomyces clavuligerus , 2000, Journal of bacteriology.

[214]  J. Corse,et al.  Biosynthesis of penicillins; new crystalline biosynthetic penicillins. , 1948, The Journal of biological chemistry.

[215]  A. Driessen,et al.  Biosynthetic concepts for the production of β‐lactam antibiotics in Penicillium chrysogenum , 2012, Biotechnology journal.

[216]  D. Mousdale,et al.  Two novel arginine derivatives from a mutant of Streptomyces clavuligerus , 1993 .

[217]  F. Frolow,et al.  Structure-function studies of the non-heme iron active site of isopenicillin N synthase: some implications for catalysis. , 2000, Biophysical chemistry.

[218]  C. Townsend,et al.  Common origin of clavulanic acid and clavam metabolites in Streptomyces , 1992 .

[219]  C. Walsh,et al.  Introduction: antibiotic resistance. , 2005, Chemical Reviews.

[220]  P. Rutledge,et al.  Isopenicillin N synthase mediates thiolate oxidation to sulfenate in a depsipeptide substrate analogue: implications for oxygen binding and a link to nitrile hydratase? , 2008, Journal of the American Chemical Society.

[221]  M. D. Lloyd,et al.  Active site mutations of recombinant deacetoxycephalosporin C synthase. , 2002, Biochemical and biophysical research communications.

[222]  M. Puri,et al.  Incorporation of oxygen into the succinate co‐product of iron(II) and 2‐oxoglutarate dependent oxygenases from bacteria, plants and humans , 2005, FEBS letters.

[223]  M. Bradley,et al.  Isopenicillin N Synthase: Mechanistic Studies , 1990 .

[224]  M. Gilpin,et al.  MM 42842, a new member of the monobactam family produced by Pseudomonas cocovenenans. II. Production, isolation and properties of MM 42842. , 1988, The Journal of antibiotics.

[225]  B. Alber Biotechnological potential of the ethylmalonyl-CoA pathway , 2010, Applied Microbiology and Biotechnology.

[226]  J. Hajdu,et al.  The structural basis of cephalosporin formation in a mononuclear ferrous enzyme , 2004, Nature Structural &Molecular Biology.

[227]  T. Furumai,et al.  Actinosynnema mirum, a new producer of nocardicin antibiotics. , 1983, The Journal of antibiotics.

[228]  J. Martín,et al.  Characterization and expression of the arginine biosynthesis gene cluster of Streptomyces clavuligerus. , 2000, Journal of molecular microbiology and biotechnology.

[229]  A. Doherty,et al.  Evidence that arginine is a later metabolic intermediate than ornithine in the biosynthesis of clavulanic acid by Streptomyces clavuligerus , 1993 .

[230]  T. Sim,et al.  In vitro conversion of penicillin G and ampicillin by recombinant Streptomyces clavuligerus NRRL 3585 deacetoxycephalosporin C synthase , 2001 .

[231]  C. Schofield,et al.  ORF17 from the Clavulanic Acid Biosynthesis Gene Cluster Catalyzes the ATP-dependent Formation of N-Glycyl-clavaminic Acid* , 2006, Journal of Biological Chemistry.

[232]  N. Westwood,et al.  Inhibition of elastase by N-sulfonylaryl beta-lactams: anatomy of a stable acyl-enzyme complex. , 1998, Biochemistry.

[233]  H. Wehrli Zur Photocyclisierung von N-Phenacylformamiden , 1980 .

[234]  N. Kyrpides,et al.  Complete genome sequence of Actinosynnema mirum type strain (101T) , 2009, Standards in genomic sciences.

[235]  D J Tipper,et al.  Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[236]  C. Schofield,et al.  The ring expansion of penama to cephams: a possible biomimetic process , 1988 .

[237]  Y. Takahashi,et al.  Asparenomycins A, B and C, new carbapenem antibiotics. II. Isolation and chemical characterization. , 1982, The Journal of antibiotics.

[238]  W. Jiang,et al.  In vivo post-translational processing and subunit reconstitution of cephalosporin acylase from Pseudomonas sp. 130. , 1999, European journal of biochemistry.

[239]  C. Schofield,et al.  Mechanism for cyclization reaction by clavaminic acid synthase. Insights from modeling studies. , 2007, Biochemistry.

[240]  C. Townsend The stereochemical fate of chiral-methyl valines in cephalosporin C biosynthesis. , 1985, Journal of natural products.

[241]  G. Turner,et al.  Analysis of a commercially improved Penicillium chrysogenum strain series: involvement of recombinogenic regions in amplification and deletion of the penicillin biosynthesis gene cluster , 1997, Journal of Industrial Microbiology and Biotechnology.

[242]  M. Arroyo,et al.  Biotechnological applications of penicillin acylases: state-of-the-art , 2002, Applied Microbiology and Biotechnology.

[243]  R. Chen,et al.  Enzyme engineering: rational redesign versus directed evolution. , 2001, Trends in biotechnology.

[244]  C. Townsend,et al.  Inhibition and alternate substrate studies on the mechanism of carbapenam synthetase from Erwinia carotovora. , 2003, Biochemistry.

[245]  C. Townsend,et al.  The stereochemical fate of (2RS,5R)- and (2RS,5S)-[5-3H]ornithine in clavulanic acid biosynthesis , 1986 .

[246]  C. Townsend,et al.  Purification and Characterization of Clavaminate Synthase from Streptomyces antibioticus , 1995, The Journal of Biological Chemistry.

[247]  A. Berks Preparations of two pivotal intermediates for the synthesis of 1-β-methyl carbapenem antibiotics , 1996 .

[248]  S. Box,et al.  Four further antibiotics related to olivanic acid produced by Streptomyces olivaceus: fermentation, isolation, characterisation and biosynthetic studies. , 1979, The Journal of antibiotics.

[249]  C. Schofield,et al.  Enzymes of valclavam biosynthesis , 1994 .

[250]  G. Challis,et al.  Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: structure prediction from the sequence of its non-ribosomal peptide synthetase. , 2000, FEMS microbiology letters.

[251]  D. Westlake,et al.  Partial purification and characterization of isopenicillin N epimerase activity from Streptomyces clavuligerus. , 1983, Canadian journal of microbiology.

[252]  Gavin J. Williams,et al.  Directed evolution of enzymes for biocatalysis and the life sciences , 2004, Cellular and Molecular Life Sciences CMLS.

[253]  M. D. Lloyd,et al.  The kinetic properties of various R258 mutants of deacetoxycephalosporin C synthase. , 2003, European journal of biochemistry.

[254]  S. Kondo,et al.  Studies on the structure of a novel peptide antibiotic, K-582. , 2009, International journal of peptide and protein research.

[255]  J. Miller,et al.  Cloning and sequencing of the beta-lactam hydroxylase gene (cefF) from Streptomyces clavuligerus: gene duplication may have led to separate hydroxylase and expandase activities in the actinomycetes , 1991, Journal of bacteriology.

[256]  J. Frère,et al.  Treatment of health-care-associated infections caused by Gram-negative bacteria: a consensus statement. , 2008, The Lancet. Infectious diseases.

[257]  D. Landman,et al.  Detection and spread of Escherichia coli possessing the plasmid-borne carbapenemase KPC-2 in Brooklyn, New York. , 2007, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[258]  K. Morokuma,et al.  The mechanism for isopenicillin N synthase from density-functional modeling highlights the similarities with other enzymes in the 2-His-1-carboxylate family. , 2008, Biochemistry.

[259]  P Christen,et al.  The molecular evolution of pyridoxal-5'-phosphate-dependent enzymes. , 2000, Advances in enzymology and related areas of molecular biology.

[260]  Robert A. Bonomo,et al.  Extended-Spectrum (cid:2) -Lactamases: a Clinical Update , 2005 .

[261]  W. Yeh,et al.  Copurification and characterization of deacetoxycephalosporin C synthetase/hydroxylase from Cephalosporium acremonium , 1987, Journal of bacteriology.

[262]  C. Yoakim,et al.  Potent β-Lactam Inhibitors of Human Cytomegalovirus Protease , 1998 .

[263]  C. Townsend,et al.  Biosynthetic studies of nocardicin A , 1981 .

[264]  W. W. Stewart Isolation and Proof of Structure of Wildfire Toxin , 1971, Nature.

[265]  J. Williams,et al.  beta-Lactamase inhibition and in vitro activity of sulbactam and sulbactam/cefoperazone. , 1997, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[266]  S. Jensen,et al.  Clavulanic acid biosynthesis and genetic manipulation for its overproduction , 2010, Applied Microbiology and Biotechnology.

[267]  C. Townsend,et al.  Fate of [15N]-p-hydroxyphenyl)glycine in nocardicin a biosynthesis , 1984 .

[268]  S. Jensen,et al.  Alanylclavam Biosynthetic Genes Are Clustered Together with One Group of Clavulanic Acid Biosynthetic Genes in Streptomyces clavuligerus , 2008, Journal of bacteriology.

[269]  A. Inoue,et al.  Isolation and Characterization of a Peptide Isomerase from Funnel Web Spider Venom (*) , 1995, The Journal of Biological Chemistry.

[270]  A. Fosberry,et al.  Clavulanic acid biosynthesis in Streptomyces clavuligerus: gene cloning and characterization. , 1995, Gene.

[271]  P. Hedden The oxidases of gibberellin biosynthesis: Their function and mechanism , 1997 .

[272]  J. Sohng,et al.  A Two-component Regulatory System Involved in Clavulanic Acid Production , 2008, The Journal of Antibiotics.

[273]  K. Kivirikko,et al.  Characterization of the iron‐ and 2‐oxoglutarate‐binding sites of human prolyl 4‐hydroxylase , 1997, EMBO Journal.

[274]  D. Floyd,et al.  SQ 26,180, a novel monobactam. II Isolation, structure determination and synthesis. , 1982, The Journal of antibiotics.

[275]  C. Schofield,et al.  Mechanisms and structures of crotonase superfamily enzymes – How nature controls enolate and oxyanion reactivity , 2008, Cellular and Molecular Life Sciences.

[276]  J. Pronk,et al.  Engineering of Penicillium chrysogenum for fermentative production of a novel carbamoylated cephem antibiotic precursor. , 2009, Metabolic engineering.

[277]  M. García-López,et al.  Optically active 1,3,4,4-tetrasubstituted β-lactams: synthesis and evaluation as tumor cell growth inhibitors. , 2011, European journal of medicinal chemistry.

[278]  S. Gould,et al.  The biosynthesis of the streptolidine moiety in streptothricin F , 1983 .

[279]  J. Baldwin,et al.  Incorporation of 18O-labelled water into oxygenated products produced by the enzyme deacetoxy/deacetylcephalosporin C synthase , 1993 .

[280]  P. Roach,et al.  Radical S-adenosylmethionine enzymes: mechanism, control and function. , 2011, Natural product reports.

[281]  J. Martín,et al.  The claR gene of Streptomyces clavuligerus, encoding a LysR-type regulatory protein controlling clavulanic acid biosynthesis, is linked to the clavulanate-9-aldehyde reductase (car) gene. , 1998, Gene.

[282]  Christopher J. Schofield,et al.  Epimerization and desaturation by carbapenem synthase (CarC). A hybrid DFT study , 2006, J. Comput. Chem..

[283]  K. Poole Resistance to β-lactam antibiotics , 2004, Cellular and Molecular Life Sciences CMLS.

[284]  B. Hawes,et al.  The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[285]  K. Poole Efflux pumps as antimicrobial resistance mechanisms , 2007, Annals of medicine.

[286]  G. Salmond,et al.  Regulation and biosynthesis of carbapenem antibiotics in bacteria , 2005, Nature Reviews Microbiology.

[287]  C. Schofield,et al.  Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta-helix fold proteins. , 2006, Journal of inorganic biochemistry.

[288]  D. K. Willis,et al.  Regulation of tabtoxin production by the lemA gene in Pseudomonas syringae , 1992, Journal of bacteriology.

[289]  J. Poulain,et al.  Complete Genome Sequence of Streptomyces cattleya NRRL 8057, a Producer of Antibiotics and Fluorometabolites , 2011, Journal of bacteriology.

[290]  S. Tsubotani,et al.  Formadicins, new monocyclic beta-lactam antibiotics of bacterial origin. II. Isolation, characterization and structures. , 1985, The Journal of antibiotics.

[291]  T. Hasegawa,et al.  C-2801X, a new cephamycin-type antibiotic II. Isolation and characterization. , 1976, The Journal of antibiotics.

[292]  W. Wehrli,et al.  Investigation of the two final steps in the biosynthesis of cephalosporin C using permeabilized cells of Cephalosporium acremonium , 1980 .

[293]  Short-chain dehydrogenases/reductases (SDR). , 1995 .

[294]  C. Schofield,et al.  Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. , 2011, Trends in biochemical sciences.

[295]  J. Hajdu,et al.  Study of the oxidative half-reaction catalyzed by a non-heme ferrous catalytic center by means of structural and computational methodologies , 2007 .

[296]  M. D. Lloyd,et al.  Contrasting fates for 6-alpha-methylpenicillin N upon oxidation by deacetoxycephalosporin C synthase (DAOCS) and deacetoxy/deacetylcephalosporin C synthase (DAOC/DACS). , 2001, Bioorganic & medicinal chemistry letters.

[297]  H. B. Woodruff,et al.  Cephamycins, a New Family of β-Lactam Antibiotics I. Production by Actinomycetes, Including Streptomyces lactamdurans sp. n , 1972, Antimicrobial Agents and Chemotherapy.

[298]  P. Liras,et al.  Regulatory mechanisms controlling antibiotic production in Streptomyces clavuligerus , 2008, Journal of Industrial Microbiology & Biotechnology.

[299]  M. Marahiel,et al.  Reactions catalyzed by mature and recombinant nonribosomal peptide synthetases. , 2004, Methods in enzymology.

[300]  E. Oldfield,et al.  On the Mössbauer spectra of isopenicillin N synthase and a model (FeNO)7 (S = 3/2) system. , 2004, Journal of the American Chemical Society.

[301]  R. Bonomo,et al.  Sulbactam forms only minimal amounts of irreversible acrylate-enzyme with SHV-1 beta-lactamase. , 2007, Biochemistry.

[302]  D. K. Willis,et al.  The Biosynthetic Gene Cluster for the β-Lactam Antibiotic Tabtoxin in Pseudomonas syringae , 2005, The Journal of Antibiotics.

[303]  C. Walsh,et al.  Biosynthesis of L-p-hydroxyphenylglycine, a non-proteinogenic amino acid constituent of peptide antibiotics. , 2000, Chemistry & biology.

[304]  J. Baldwin,et al.  Purification of isopenicillin N synthetase. , 1984, The Biochemical journal.

[305]  T. Poulos,et al.  High-resolution crystal structure of cytochrome P450cam. , 1987, Journal of molecular biology.

[306]  L. Vining,et al.  Localization of the lysine epsilon-aminotransferase (lat) and delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (pcbAB) genes from Streptomyces clavuligerus and production of lysine epsilon-aminotransferase activity in Escherichia coli , 1991, Journal of bacteriology.

[307]  A. W. Douglas,et al.  Biosynthesis of the beta-lactam antibiotic, thienamycin, by Streptomyces cattleya. , 1985, The Journal of biological chemistry.

[308]  J. Sohng,et al.  Role of σ-factor (orf21) in clavulanic acid production in Streptomyces clavuligerus NRRL3585. , 2011, Microbiological research.

[309]  C. Walsh,et al.  Molecular cloning and sequence analysis of the complestatin biosynthetic gene cluster , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[310]  R. Müller,et al.  Genes and Enzymes Involved in Caffeic Acid Biosynthesis in the Actinomycete Saccharothrix espanaensis , 2006, Journal of bacteriology.

[311]  J. S. Wells,et al.  SQ 28,332, a new monobactam produced by a Flexibacter sp. Taxonomy, fermentation, isolation, structure determination and biological properties. , 1983, The Journal of antibiotics.

[312]  Malcolm G. P. Page,et al.  b-Lactamase inhibitors. , 2000, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[313]  Rongfeng Li,et al.  Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. , 2006, Metabolic engineering.

[314]  J. Blanchard,et al.  Structure and functions of the GNAT superfamily of acetyltransferases. , 2005, Archives of biochemistry and biophysics.

[315]  C. Schofield,et al.  Structural and Mechanistic Studies on Carboxymethylproline Synthase (CarB), a Unique Member of the Crotonase Superfamily Catalyzing the First Step in Carbapenem Biosynthesis* , 2005, Journal of Biological Chemistry.

[316]  J. Martín,et al.  Purification to homogeneity and characterization of acyl coenzyme A:6-aminopenicillanic acid acyltransferase of Penicillium chrysogenum , 1987, Antimicrobial Agents and Chemotherapy.

[317]  Craig A. Townsend,et al.  Insights into cis-autoproteolysis reveal a reactive state formed through conformational rearrangement , 2012, Proceedings of the National Academy of Sciences.

[318]  J. Martín,et al.  Characterization of the cmcH genes of Nocardia lactamdurans and Streptomyces clavuligerus encoding a functional 3'-hydroxymethylcephem O-carbamoyltransferase for cephamycin biosynthesis. , 1995, Gene.

[319]  C. Townsend,et al.  Synthesis and reaction of potential alternate substrates and mechanism-based inhibitors of clavaminate synthase. , 1993, Journal of natural products.

[320]  C M Henriksen,et al.  Purification and characterization of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Penicillium chrysogenum. , 1997, The Biochemical journal.

[321]  Paul F. Cook,et al.  The α-aminoadipate pathway for lysine biosynthesis in fungi , 2006, Cell Biochemistry and Biophysics.

[322]  M. Marahiel,et al.  Structural basis for the erythro‐stereospecificity of the l‐arginine oxygenase VioC in viomycin biosynthesis , 2009, The FEBS journal.

[323]  A. Demain,et al.  Cell-free synthesis of δ-(L-α-aminoadipyl)-L-cysteine, the first intermediate of penicillin and cephalosporin biosynthesis , 1986 .

[324]  Karl Edman,et al.  X-ray snapshots of serine protease catalysis reveal a tetrahedral intermediate , 2001, Nature Structural Biology.

[325]  L. Amzel,et al.  Structure of a Coenzyme A Pyrophosphatase from Deinococcus radiodurans: a Member of the Nudix Family , 2003, Journal of bacteriology.

[326]  M. Muroi,et al.  Sulfazecin and isosulfazecin, novel β-lactam antibiotics of bacterial origin , 1981, Nature.

[327]  D. K. Willis,et al.  The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators , 1992, Journal of bacteriology.

[328]  R. Cichewicz,et al.  Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. , 2010, Natural product reports.

[329]  V. C. Sonawane Enzymatic Modifications of Cephalosporins by Cephalosporin Acylase and Other Enzymes , 2006, Critical reviews in biotechnology.

[330]  M. D. Lloyd,et al.  The effect of cysteine mutations on recombinant deacetoxycephalosporin C synthase from S. clavuligerus. , 2000, Biochemical and biophysical research communications.

[331]  J. Hajdu,et al.  Structure of isopenicillinN synthase complexed with substrate and the mechanism ofpenicillin formation , 1997, Nature.

[332]  Y. Nozaki,et al.  C-19393 S2 and H2, new carbapenem antibiotics. I. Taxonomy of the producing strain, fermentation and antibacterial properties. , 1980, The Journal of antibiotics.

[333]  Russell B Williams,et al.  Epigenetic remodeling of the fungal secondary metabolome. , 2008, Organic & biomolecular chemistry.

[334]  M. D. Lloyd,et al.  Controlling the Substrate Selectivity of Deacetoxycephalosporin/deacetylcephalosporin C Synthase* , 2004, Journal of Biological Chemistry.

[335]  J. Blanchard,et al.  Meropenem-Clavulanate Is Effective Against Extensively Drug-Resistant Mycobacterium tuberculosis , 2009, Science.

[336]  T. Nonaka,et al.  SDR Structure, Mechanism of Action, and Substrate Recognition , 2001 .

[337]  C. Townsend,et al.  Structure of β-lactam synthetase reveals how to synthesize antibiotics instead of asparagine , 2001, Nature Structural Biology.

[338]  M. Marahiel,et al.  Physical identification of a chromosomal locus encoding biosynthetic genes for the lipopeptide calcium-dependent antibiotic (CDA) of Streptomyces coelicolor A3(2). , 1998, Microbiology.

[339]  T. Lange Purification and partial amino-acid sequence of gibberellin 20-oxidase from Cucurbita maxima L. endosperm , 2004, Planta.

[340]  C. Townsend,et al.  Role of the cytochrome P450 NocL in nocardicin A biosynthesis. , 2002, Journal of the American Chemical Society.

[341]  C. Perry,et al.  Piperacillin/Tazobactam , 1999, Drugs.

[342]  M. James,et al.  The molecular structure of ornithine acetyltransferase from Mycobacterium tuberculosis bound to ornithine, a competitive inhibitor. , 2010, Journal of molecular biology.

[343]  C. Townsend,et al.  Expansion of the Clavulanic Acid Gene Cluster: Identification and In Vivo Functional Analysis of Three New Genes Required for Biosynthesis of Clavulanic Acid by Streptomyces clavuligerus , 2000, Journal of bacteriology.

[344]  C. Walsh,et al.  Structural insights into nonribosomal peptide enzymatic assembly lines. , 2009, Natural product reports.

[345]  M. Gilpin,et al.  MM 42842, a new member of the monobactam family produced by Pseudomonas cocovenenans. I. Identification of the producing organism. , 1988, The Journal of antibiotics.

[346]  T. Zabriskie,et al.  Lysine biosynthesis and metabolism in fungi. , 2000, Natural product reports.

[347]  Maya Topf,et al.  The unusual bifunctional catalysis of epimerization and desaturation by carbapenem synthase. , 2004, Journal of the American Chemical Society.

[348]  M. D. Lloyd,et al.  Product-substrate engineering by bacteria: studies on clavaminate synthase, a trifunctional dioxygenase , 1999 .

[349]  H. Park,et al.  Three unlinked gene clusters are involved in clavam metabolite biosynthesis in Streptomyces clavuligerus. , 2004, Canadian journal of microbiology.

[350]  J. Baldwin,et al.  Evidence for epoxidase activity in deacetoxy/deacetylcephalosporin C synthase , 1993 .

[351]  S. Jensen,et al.  A pathway‐specific transcriptional activator regulates late steps of clavulanic acid biosynthesis in Streptomyces clavuligerus , 1998, Molecular microbiology.

[352]  D. Westlake,et al.  Deacetoxycephalosporin C synthetase and deacetoxycephalosporin C hydroxylase are two separate enzymes in Streptomyces clavuligerus. , 1985, The Journal of antibiotics.

[353]  C. Townsend,et al.  Crystal Structure of Carbapenam Synthetase (CarA)* , 2003, Journal of Biological Chemistry.

[354]  H. B. Woodruff,et al.  Cefoxitin and cephamycins: microbiological studies. , 1979, Reviews of infectious diseases.

[355]  J. Martín,et al.  Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. , 2005, Current opinion in microbiology.

[356]  Y. Takahashi,et al.  Pluracidomycin A2, a new carbapenem bearing a sulfinic acid, and other minor pluracidomycins. , 1985, The Journal of antibiotics.

[357]  L. Vining,et al.  Cloning and location of a gene governing lysine epsilon-aminotransferase, an enzyme initiating beta-lactam biosynthesis in Streptomyces spp , 1991, Journal of bacteriology.

[358]  C. Townsend,et al.  Emerging evidence for a shared biosynthetic pathway among clavulanic acid and the structurally diverse clavam metabolites , 1993 .

[359]  A. Driessen,et al.  d -( L - a -Aminoadipyl)- L -cysteinyl- D -valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme , 2002 .

[360]  U. Giesecke,et al.  Industrial enzymatic production of cephalosporin-based beta-lactams. , 2004, Advances in biochemical engineering/biotechnology.

[361]  R. Bonomo,et al.  High Resolution Crystal Structures of the trans-Enamine Intermediates Formed by Sulbactam and Clavulanic Acid and E166A SHV-1 β-Lactamase* , 2005, Journal of Biological Chemistry.

[362]  P. Kirkpatrick,et al.  Fresh from the pipeline. Ezetimibe. , 2003, Nature reviews. Drug discovery.

[363]  Chun-Song Chua,et al.  Relevant Double Mutations in Bioengineered Streptomyces clavuligerus Deacetoxycephalosporin C Synthase Result in Higher Binding Specificities Which Improve Penicillin Bioconversion , 2007, Applied and Environmental Microbiology.

[364]  J. Martín,et al.  Novel genes involved in cephalosporin biosynthesis: the three-component isopenicillin N epimerase system. , 2004, Advances in biochemical engineering/biotechnology.

[365]  A. Brown,et al.  Naturally-occurring beta-lactamase inhibitors with antibacterial activity. , 1976, The Journal of antibiotics.

[366]  Rongfeng Li,et al.  Carbapenem biosynthesis: confirmation of stereochemical assignments and the role of CarC in the ring stereoinversion process from L-proline. , 2003, Journal of the American Chemical Society.

[367]  J. S. Wells,et al.  Two new monobactam antibiotics produced by a Flexibacter sp. I. Taxonomy, fermentation, isolation and biological properties. , 1983, The Journal of antibiotics.

[368]  J. Pezzuto,et al.  Novel Bioactive Steroidal Alkaloids from Pachysandra procumbens , 2000 .

[369]  M. Okabe,et al.  Structures of OA-6129D and E, new carbapenam antibiotics. , 1984, Journal of antibiotics (Tokyo. 1968).

[370]  F. Chattaway,et al.  Lysine control of alpha-aminoadipate and penicillin synthesis in Penicillium chrysogenum. , 1968, The Biochemical journal.

[371]  C. Schofield,et al.  Crotonase catalysis enables flexible production of functionalized prolines and carbapenams. , 2012, Journal of the American Chemical Society.

[372]  S. Jensen,et al.  Genes Specific for the Biosynthesis of Clavam Metabolites Antipodal to Clavulanic Acid Are Clustered with the Gene for Clavaminate Synthase 1 in Streptomyces clavuligerus , 1999, Antimicrobial Agents and Chemotherapy.

[373]  D. Westlake,et al.  Enzymatic synthesis of the penicillin and cephalosporin nuclei from an acyclic peptide containing carboxymethylcysteine. , 1984, Biochemical and biophysical research communications.

[374]  B. Arison,et al.  Epithienamycins. II. Isolation and structure assignment. , 1981, The Journal of antibiotics.

[375]  M. D. Lloyd,et al.  Studies on the active site of deacetoxycephalosporin C synthase. , 1999, Journal of molecular biology.

[376]  C. Walsh,et al.  Kinetic analysis of three activated phenylalanyl intermediates generated by the initiation module PheATE of gramicidin S synthetase. , 2001, Biochemistry.

[377]  H. Troonen,et al.  RIT 2214, a new biosynthetic penicillin produced by a mutant of Cephalosporium acremonium. , 1976, The Journal of antibiotics.

[378]  C. Townsend,et al.  The role of molecular oxygen in clavulanic acid biosynthesis: evidence for a bacterial oxidative deamination , 1988 .

[379]  G. Blanco Comparative analysis of a cryptic thienamycin-like gene cluster identified in Streptomyces flavogriseus by genome mining , 2011, Archives of Microbiology.

[380]  S. Harada,et al.  Interactions of formylamino- and methoxy-substituted beta-lactam antibiotics with beta-lactamases. , 1985, The Journal of antibiotics.

[381]  R. Bonomo,et al.  Evaluation of Ceftazidime and NXL104 in Two Murine Models of Infection Due to KPC-Producing Klebsiella pneumoniae , 2010, Antimicrobial Agents and Chemotherapy.

[382]  A. Derome,et al.  Stereochemistry of the incorporation of valine methyl groups into methylene groups in cephalosporin C. , 1984, The Biochemical journal.

[383]  W. Parker,et al.  EM5400, a family of monobactam antibiotics produced by Agrobacterium radiobacter. II. Isolation and structure determination. , 1982, The Journal of antibiotics.

[384]  Lawrence Que,et al.  One motif — many different reactions , 2000, Nature Structural Biology.

[385]  Y. Fujisawa,et al.  Letter: Occurrence of a 3-methylthiomethylcephem derivative in a culture broth of Cephalosporium mutant. , 1974, The Journal of antibiotics.

[386]  A. Prescott A Dilemma of Dioxygenases (or Where Biochemistry and Molecular Biology Fail to Meet) , 1993 .

[387]  P. Rutledge,et al.  Structural Studies on the Reaction of Isopenicillin N Synthase with a Sterically Demanding Depsipeptide Substrate Analogue , 2009, Chembiochem : a European journal of chemical biology.

[388]  A. So,et al.  Critical shortage of new antibiotics in development against multidrug-resistant bacteria-Time to react is now. , 2011, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[389]  J. Lipscomb,et al.  Spectroscopic studies of isopenicillin N synthase. A mononuclear nonheme Fe2+ oxidase with metal coordination sites for small molecules and substrate. , 1989, The Journal of biological chemistry.

[390]  G. Turner,et al.  The npgA/cfwA gene encodes a putative 4'-phosphopantetheinyl transferase which is essential for penicillin biosynthesis in Aspergillus nidulans , 2003, Current Genetics.

[391]  J. Hajdu,et al.  Conformational flexibility of the C terminus with implications for substrate binding and catalysis revealed in a new crystal form of deacetoxycephalosporin C synthase. , 2004, Journal of molecular biology.

[392]  R. Fingerhut,et al.  Purification and properties of an alpha-methylacyl-CoA racemase from rat liver. , 1994, European journal of biochemistry.

[393]  J. Ward,et al.  The biosynthetic genes for clavulanic acid and cephamycin production occur as a 'super-cluster' in three Streptomyces. , 1993, FEMS microbiology letters.

[394]  J. Martín,et al.  Evolution of the clusters of genes for β-lactam antibiotics: a model for evolutive combinatorial assembly of new β-lactams , 1998 .

[395]  J. Martín,et al.  Cloning and characterization of the isopenicillin N synthase gene of Streptomyces griseus NRRL 3851 and studies of expression and complementation of the cephamycin pathway in Streptomyces clavuligerus , 1991, Antimicrobial Agents and Chemotherapy.

[396]  E. Abraham,et al.  Cephalosporin C, a New Antibiotic containing Sulphur and D-α-Aminoadipic Acid , 1955, Nature.

[397]  T. King,et al.  Clavulanic acid, a novel β-lactam isolated from Streptomyces clavuligerus; X-ray crystal structure analysis , 1976 .

[398]  A. Pitt,et al.  Evidence for an insertion-homolysis mechanism for carbon-sulphur bond formation in penicillin biosynthesis .1. Synthesis of tripeptide probes , 1996 .

[399]  J. Gerlt,et al.  Divergent function in the crotonase superfamily: an anhydride intermediate in the reaction catalyzed by 3-hydroxyisobutyryl-CoA hydrolase. , 2003, Journal of the American Chemical Society.

[400]  D. O'Hagan,et al.  Enzymes that catalyse SN2 reaction mechanisms. , 2010, Natural product reports.

[401]  P. Skatrud,et al.  Cloning and expression of a hybrid Streptomyces clavuligerus cefE gene in Penicillium chrysogenum , 1990, Current Genetics.

[402]  J. Martín,et al.  Overexpression of the Nocardia lactamduransα‐Aminoadipyl‐Cysteinyl‐Valine Synthetase in Streptomyces lividans , 1996 .

[403]  M. D. Lloyd,et al.  Probing the penicillin sidechain selectivity of recombinant deacetoxycephalosporin C synthase , 2001, Cellular and Molecular Life Sciences CMLS.

[404]  E. Abraham,et al.  The conversion of cephalosporins to 7 alpha-methoxycephalosporins by cell-free extracts of Streptomyces clavuligerus. , 1980, Biochemical Journal.

[405]  S. Jensen,et al.  Cloning, sequencing and disruption of a gene from Streptomyces clavuligerus involved in clavulanic acid biosynthesis. , 1994, Gene.

[406]  M. D. Lloyd,et al.  Kinetic and crystallographic studies on deacetoxycephalosporin C synthase (DAOCS). , 2001, Journal of molecular biology.

[407]  S. Schuster,et al.  Three-dimensional structure of Escherichia coli asparagine synthetase B: a short journey from substrate to product. , 1999, Biochemistry.

[408]  V. Ratovelomanana-Vidal,et al.  Asymmetric hydrogenation of vinylphosphonic acids and esters with chiral Ru(II) catalysts , 1998 .

[409]  T. Sim,et al.  Mutational Evidence Supporting the Involvement of Tripartite Residues His183, Asp185, and His243 in Streptomyces clavuligerus Deacetoxycephalosporin C Synthase for Catalysis , 2000, Bioscience, biotechnology, and biochemistry.

[410]  Y. Nozaki,et al.  Formadicins, new monocyclic beta-lactam antibiotics of bacterial origin. I. Taxonomy, fermentation and biological activities. , 1985, The Journal of antibiotics.

[411]  J. Luengo,et al.  Direct enzymatic synthesis of natural penicillins using phenylacetyl-CoA: 6-APA phenylacetyl transferase of Penicillium chrysogenum: minimal and maximal side chain length requirements. , 1986, The Journal of antibiotics.

[412]  J. Baldwin,et al.  Investigation of the stereospecificity of clavaminic acid synthase in the desaturation of dihydroclavaminic acid to clavaminic acid , 1994 .

[413]  K. R. Thompson,et al.  Cephalosporin antibiotics can be modified to inhibit human leukocyte elastase , 1986, Nature.

[414]  C. Schofield,et al.  Enzymatic Synthesis of Monocyclic β-Lactams , 2002 .

[415]  Cell-Free Biosynthesis of Nocardicin A from Nocardicin E and S-Adenosylmethionine , 1988 .

[416]  H. Rapoport,et al.  Synthesis of tabtoxinine-delta-lactam. , 1975, The Journal of organic chemistry.

[417]  Erik Nordling,et al.  Critical Residues for Structure and Catalysis in Short-chain Dehydrogenases/Reductases* , 2002, The Journal of Biological Chemistry.

[418]  J. Martín,et al.  Direct Enzymatic Synthesis of Penicillin G Using Cyclases of Penicillium chrysogenum and Acremonium chrysogenum , 1986, Bio/Technology.

[419]  C. Schofield,et al.  Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. , 1999, Current opinion in structural biology.

[420]  J. Luengo,et al.  Biosynthesis of benzylpenicillin (G), phenoxymethylpenicillin (V) and octanoylpenicillin (K) from glutathione S-derivatives. , 1990, The Journal of antibiotics.

[421]  Sara Lejon,et al.  The last step in cephalosporin C formation revealed: crystal structures of deacetylcephalosporin C acetyltransferase from Acremonium chrysogenum in complexes with reaction intermediates. , 2008, Journal of molecular biology.

[422]  C Hertweck,et al.  Cloning, sequencing and analysis of the enterocin biosynthesis gene cluster from the marine isolate 'Streptomyces maritimus': evidence for the derailment of an aromatic polyketide synthase. , 2000, Chemistry & biology.

[423]  M. Hediger,et al.  Knockout of Glutamate Transporters Reveals a Major Role for Astroglial Transport in Excitotoxicity and Clearance of Glutamate , 1996, Neuron.

[424]  A. Delcour,et al.  Outer membrane permeability and antibiotic resistance. , 2009, Biochimica et biophysica acta.

[425]  Jeanne M. Davidsen,et al.  Identification and Characterization of NocR as a Positive Transcriptional Regulator of the β-Lactam Nocardicin A in Nocardia uniformis , 2008, Journal of bacteriology.

[426]  C. Schofield,et al.  Carboxymethylproline synthase catalysed syntheses of functionalised N-heterocycles. , 2010, Chemical communications.

[427]  C. Schofield,et al.  Chemistry and biosynthesis of clavulanic acid and other clavams. , 1997, Natural product reports.

[428]  J. Martín,et al.  The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetylcephalosporin C acetyltransferase closely related to homoserine O-acetyltransferase , 1992, Journal of bacteriology.

[429]  J. Tyler,et al.  Clavulanic acid biosynthesis; the final steps , 2001 .

[430]  T. Ishikura,et al.  Studies on the biosynthesis of carbapenem antibiotics. III. Enzymological characterization of the L-amino acid acylase activity of A933 acylase. , 1985, The Journal of antibiotics.

[431]  F. Dyda,et al.  GCN5-related N-acetyltransferases: a structural overview. , 2000, Annual review of biophysics and biomolecular structure.

[432]  P. Terpstra,et al.  Prediction of the Occurrence of the ADP-binding βαβ-fold in Proteins, Using an Amino Acid Sequence Fingerprint , 1986 .

[433]  V. Brecht,et al.  Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase , 2009, Proceedings of the National Academy of Sciences.

[434]  Y. Fujisawa,et al.  Accumulation of Deacetoxycephalosporin C by a Deacetylcephalosporin C Negative Mutant of Cephalosporium acremonium , 1975 .

[435]  M. Hashimoto,et al.  Letter: Nocardicin A and B, novel monocyclic beta-lactam antibiotics from a Nocardia species. , 1976, Journal of the American Chemical Society.

[436]  J M Hamilton-Miller,et al.  beta-lactams: variations on a chemical theme, with some surprising biological results. , 1999, The Journal of antimicrobial chemotherapy.

[437]  R. Banerjee,et al.  Spectroscopic and computational studies on the adenosylcobalamin-dependent methylmalonyl-CoA mutase: evaluation of enzymatic contributions to Co-C bond activation in the Co3+ ground state. , 2004, Journal of the American Chemical Society.

[438]  James R. Miller,et al.  Cloning and Expression of the Fungal Expandase/hydroxylase Gene Involved in Cephalosporin Biosynthesis , 1987, Bio/Technology.

[439]  Craig A. Townsend,et al.  Three Unusual Reactions Mediate Carbapenem and Carbapenam Biosynthesis , 2000 .

[440]  M. Fleming,et al.  Molecular characterization of the acyl-coenzyme A:isopenicillin N acyltransferase gene (penDE) from Penicillium chrysogenum and Aspergillus nidulans and activity of recombinant enzyme in Escherichia coli , 1990, Journal of bacteriology.

[441]  J. Sutherland,et al.  On the production of α,β‐heterodimeric acyl‐coenzyme A: isopenicillin N‐acyltransferase of Penicillium chrysogenum , 1993 .

[442]  W. Vollmer,et al.  The Architecture of the Murein (Peptidoglycan) in Gram-Negative Bacteria: Vertical Scaffold or Horizontal Layer(s)? , 2004, Journal of bacteriology.

[443]  D. Lowe,et al.  Isolation and Characterization of a Pseudomonas Strain Producing Glutaryl-7-Aminocephalosporanic Acid Acylase , 1993, Applied and environmental microbiology.

[444]  S. Queener,et al.  Synthesis of Deactoxycephalosporin C by a Mutant of Cephalosporium acremonium , 1974, Antimicrobial Agents and Chemotherapy.

[445]  P. Leadlay,et al.  Organisation of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of genes flanking the polyketide synthase. , 1996, Gene.

[446]  C. Schofield,et al.  Structural and mechanistic studies on N(2)-(2-carboxyethyl)arginine synthase. , 2009, Biochemical and biophysical research communications.

[447]  C. Schofield,et al.  The origin of the β-lactam carbons of clavulanic acid , 1997 .

[448]  H. Imanaka,et al.  Isolation of New Nocardicins from Nocardia uniformis subsp. tsuyamanensis , 1977 .

[449]  T. Kikuchi,et al.  Pachysandra Alkaloids. VIII. Structures of Pachystermine-A and -B, Novel Type Alkaloids Having a β-Lactam Ring , 1967 .

[450]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[451]  C. Schofield,et al.  Acyl coenzyme A: 6‐aminopenicillanic acid acyltransferase from Penicillium chrysogenum and Aspergillus nidulans , 1990, FEBS letters.

[452]  J. Elkins,et al.  Alternative oxidation by isopenicillin N synthase observed by X-ray diffraction. , 2001, Chemistry & biology.

[453]  N. Sewald,et al.  Terpenoid alkaloids of the Buxaceae family with potential biological importance. , 2008, Natural product reports.

[454]  Cheng-Lung Chen,et al.  Theoretical investigation on reaction of sulbactam with wild-type SHV-1 β-lactamase: acylation, tautomerization, and deacylation. , 2011, The journal of physical chemistry. B.

[455]  C. Schofield,et al.  Cephalosporin biosynthesis: A branched pathway sensitive to an isotope effect , 1991 .

[456]  N. Turner,et al.  Stereospecificity of carbon–sulphur bond formation in penicillin biosynthesis , 1986 .

[457]  D. Westlake,et al.  Purification of isopenicillin N synthetase from Streptomyces clavuligerus. , 1986, Canadian journal of microbiology.

[458]  Characterization and expression in Streptomyces lividans of cefD and cefE genes from Nocardia lactamdurans: the organization of the cephamycin gene cluster differs from that in Streptomyces clavuligerus , 2004, Molecular and General Genetics MGG.

[459]  R. Banerjee,et al.  Co-C bond activation in methylmalonyl-CoA mutase by stabilization of the post-homolysis product Co2+ cobalamin. , 2005, Journal of the American Chemical Society.

[460]  H M Holden,et al.  The crotonase superfamily: divergently related enzymes that catalyze different reactions involving acyl coenzyme a thioesters. , 2001, Accounts of chemical research.

[461]  V. Vinci,et al.  Production of Cephalosporin Intermediates by Feeding Adipic Acid to Recombinant Penicillium chrysogenum Strains Expressing Ring Expansion Activity , 1995, Bio/Technology.

[462]  V. Brecht,et al.  Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: The ethylmalonyl-CoA pathway , 2007, Proceedings of the National Academy of Sciences.

[463]  C. Townsend,et al.  The role of nocardicin G in nocardicin A biosynthesis , 1988 .

[464]  I. Borovok,et al.  Ferrous active site of isopenicillin N synthase: genetic and sequence analysis of the endogenous ligands. , 1996, Biochemistry.

[465]  N. Westwood,et al.  Reversible acylation of elastase by γ-lactam analogues of β-lactam inhibitors , 1997 .

[466]  W. Hol,et al.  The 2.0 A crystal structure of cephalosporin acylase. , 2000, Structure.

[467]  N. Serizawa,et al.  A new carbapenam No. 17927 D substance. , 1983, Journal of antibiotics (Tokyo. 1968).

[468]  C. Townsend,et al.  A Conserved Lysine in β‐Lactam Synthetase Assists Ring Cyclization: Implications for Clavam and Carbapenem Biosynthesis , 2009, ChemBioChem.

[469]  J. Martín,et al.  Effect of exogenous lysine on the expression of early cephamycin C biosynthetic genes and antibiotic production in Nocardia lactamdurans MA4213 , 2001, Applied Microbiology and Biotechnology.

[470]  J. Martín,et al.  Possible involvement of the lysine epsilon-aminotransferase gene (lat) in the expression of the genes encoding ACV synthetase (pcbAB) and isopenicillin N synthase (pcbC) in Streptomyces clavuligerus. , 1994, Microbiology.

[471]  J. Elkins,et al.  Crystal Structure and Mechanistic Implications of N2-(2-Carboxyethyl)arginine Synthase, the First Enzyme in the Clavulanic Acid Biosynthesis Pathway* , 2004, Journal of Biological Chemistry.

[472]  J. Williamson,et al.  Stereochemistry of methylation in thienamycin biosynthesis: example of a methyl transfer from methionine with retention of configuration , 1986 .

[473]  J. Martín,et al.  Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase. , 2006, The Biochemical journal.

[474]  R. Sykes,et al.  Aztreonam: the first monobactam. , 1985, The American journal of medicine.

[475]  N. Glansdorff,et al.  Characterization and kinetic mechanism of mono- and bifunctional ornithine acetyltransferases from thermophilic microorganisms. , 2000, European journal of biochemistry.

[476]  M. Turner,et al.  The carbamoylation of the 3-hydroxymethyl group of 7alpha-methoxy-7beta-(5-D-aminoadipamido)-3-hydroxymethylceph-3-em-4-carboxylic acid (desacetyl-7alpha-methoxycephalosporin C) by homogenates of Streptomyces clavuligerus [proceedings]. , 1977, Biochemical Society transactions.

[477]  E N Baker,et al.  Crystal structures of Bacillus caldovelox arginase in complex with substrate and inhibitors reveal new insights into activation, inhibition and catalysis in the arginase superfamily. , 1999, Structure.

[478]  C. Méndez,et al.  The biosynthetic gene cluster for the beta-lactam carbapenem thienamycin in Streptomyces cattleya. , 2003, Chemistry & biology.

[479]  H. Döhren Biochemistry and general genetics of nonribosomal peptide synthetases in fungi. , 2004 .

[480]  O. Herzberg,et al.  Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis. , 1996, Structure.

[481]  Lei Li,et al.  Adenosyl Radical: Reagent and Catalyst in Enzyme Reactions , 2010, Chembiochem : a European journal of chemical biology.

[482]  A. Demain,et al.  Biochemical studies on the activity of δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase from Streptomyces clavuligerus , 1992 .

[483]  P. Lambert,et al.  In Vitro and In Vivo Activities of AM-112, a Novel Oxapenem , 2003, Antimicrobial Agents and Chemotherapy.

[484]  M. Bradley,et al.  Further evidence for the involvement of a monocyclic β-lactam in the enzymatic conversion of δ-L-α-aminoadipoyl-L-cysteinyl-D-valine into isopenicillin N. , 1991 .

[485]  R. Heath,et al.  Substrate specificity of soluble recombinant deacetoxycephalosporin C/deacetylcephalosporin C synthase , 1992 .

[486]  Christopher J Schofield,et al.  Biosynthesis of Carbapenem Antibiotics: New Carbapenam Substrates for Carbapenem Synthase (CarC) , 2004, Chembiochem : a European journal of chemical biology.

[487]  J. Rouvinen,et al.  Structural comparison of Ntn‐hydrolases , 2000, Protein science : a publication of the Protein Society.

[488]  T. Kato,et al.  Chitinovorins A, B and C, novel beta-lactam antibiotics of bacterial origin. , 1984, The Journal of antibiotics.

[489]  S. J. Knott,et al.  In vitro antibacterial properties of BRL 36650, a novel 6 alpha-substituted penicillin , 1984, Antimicrobial Agents and Chemotherapy.

[490]  R. Day,et al.  Chiral inversion of 2-arylpropionic acid non-steroidal anti-inflammatory drugs--II. Racemization and hydrolysis of (R)- and (S)-ibuprofen-CoA thioesters. , 1991, Biochemical pharmacology.

[491]  L. Liu,et al.  Characterization of dapB, a gene required by Pseudomonas syringae pv. tabaci BR2.024 for lysine and tabtoxinine-beta-lactam biosynthesis , 1997, Journal of bacteriology.

[492]  G. Turner,et al.  Thioesterase domain of δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase: alteration of stereospecificity by site-directed mutagenesis , 2000 .

[493]  M. Groenen,et al.  Cloning and characterization of the acyl-coenzyme A: 6-aminopenicillanic-acid-acyltransferase gene of Penicillium chrysogenum. , 1989, Gene.

[494]  M. Paetzel,et al.  Unconventional serine proteases: Variations on the catalytic Ser/His/Asp triad configuration , 2008, Protein science : a publication of the Protein Society.

[495]  H. Park,et al.  Two Sets of Paralogous Genes Encode the Enzymes Involved in the Early Stages of Clavulanic Acid and Clavam Metabolite Biosynthesis in Streptomyces clavuligerus , 2004, Antimicrobial Agents and Chemotherapy.

[496]  J. Martín,et al.  Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization, ring expansion, and acetylation genes. , 2007, Chemistry & biology.

[497]  M. Marahiel,et al.  Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate‐forming enzymes , 1992, Molecular microbiology.

[498]  T. Mori,et al.  A new carbapenem antibiotic, 6643-X. , 1982, The Journal of antibiotics.

[499]  C. García-Estrada,et al.  Motifs in the C-terminal region of the Penicillium chrysogenum ACV synthetase are essential for valine epimerization and processivity of tripeptide formation. , 2012, Biochimie.

[500]  T. Stachelhaus,et al.  The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. , 1999, Chemistry & biology.

[501]  C. Schofield,et al.  Studies on the mechanism of deacetoxy–deacetylcephalosporin C synthase using cyclopropyl substituted cephalosporin probes , 1991 .

[502]  K. Tanaka,et al.  Asparenomycins A, B and C, new carbapenem antibiotics. I. Taxonomic studies on the producing microorganisms. , 1982, The Journal of antibiotics.

[503]  C. M. Stevens,et al.  Biosynthesis of a 7-alpha-methoxycephalosporin. Incorporation of molecular oxygen. , 1979, The Biochemical journal.

[504]  C. Townsend,et al.  Probable Role of Clavaminic Acid as the Terminal Intermediate in the Common Pathway to Clavulanic Acid and the Antipodal Clavam Metabolites , 1997 .

[505]  J. Sohng,et al.  Characterization of pbpA and pbp2 Encoding Penicillin-binding Proteins Located on the Downstream of Clavulanic Acid Gene Cluster in Streptomyces clavuligerus , 2006, Biotechnology Letters.

[506]  W. Quax,et al.  Improved beta-lactam acylases and their use as industrial biocatalysts. , 2004, Current opinion in biotechnology.

[507]  C. Townsend,et al.  β-Lactam synthetase: A new biosynthetic enzyme , 1998 .

[508]  Huimin Zhao,et al.  Directed evolution of enzymes and biosynthetic pathways. , 2006, Current opinion in microbiology.

[509]  R. Field,et al.  Isolation and partial characterisation of ACV synthetase from Cephalosporium acremonium and Streptomyces clavuligerus. , 1990, The Journal of antibiotics.

[510]  C. Schofield,et al.  Biosynthetic precursors of valclavam , 1994 .

[511]  I. Andersson,et al.  Clavulanic acid dehydrogenase: structural and biochemical analysis of the final step in the biosynthesis of the beta-lactamase inhibitor clavulanic acid. , 2007, Biochemistry.

[512]  C. Schofield,et al.  Revised structures for Tü 1718B and valclavam , 1993 .

[513]  L. Que,et al.  Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. , 2004, Chemical reviews.

[514]  C. Schofield,et al.  β-Lactam synthetase: implications for β-lactamase evolution , 1998 .

[515]  Mohamed A. Marahiel,et al.  Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis. , 1997, Chemical reviews.

[516]  C. Schofield,et al.  X-ray absorption studies of the ferrous active site of isopenicillin N synthase and related model complexes. , 1993, Biochemistry.

[517]  D. Rosi,et al.  Mutants of Streptomyces cattleya producing N-acetyl and deshydroxy carbapenems related to thienamycin. , 1981, The Journal of antibiotics.

[518]  Jeanne M. Davidsen,et al.  In vivo characterization of nonribosomal peptide synthetases NocA and NocB in the biosynthesis of nocardicin A. , 2012, Chemistry & biology.

[519]  Abimael D Rodríguez,et al.  Monamphilectine A, a potent antimalarial β-lactam from marine sponge Hymeniacidon sp: isolation, structure, semisynthesis, and bioactivity. , 2010, Organic letters.

[520]  J. Martín,et al.  Gene clusters for beta-lactam antibiotics and control of their expression: why have clusters evolved, and from where did they originate? , 2006, International microbiology : the official journal of the Spanish Society for Microbiology.

[521]  J. Elkins,et al.  Interactions of isopenicillin N synthase with cyclopropyl-containing substrate analogues reveal new mechanistic insight. , 2007, Biochemistry.

[522]  C. Wharton,et al.  Anatomy of a simple acyl intermediate in enzyme catalysis: combined biophysical and modeling studies on ornithine acetyl transferase. , 2009, Journal of the American Chemical Society.

[523]  Anna Lechner,et al.  Biosynthesis of the salinosporamide A polyketide synthase substrate chloroethylmalonyl-coenzyme A from S-adenosyl-l-methionine , 2009, Proceedings of the National Academy of Sciences.

[524]  James R. Miller,et al.  Cloning, characterization, and expression in Escherichia coli of the Streptomyces clavuligerus gene encoding deacetoxycephalosporin C synthetase , 1989, Journal of bacteriology.

[525]  M. D. Lloyd,et al.  Isolation of an intermediate in clavulanic acid biosynthesis , 1990 .

[526]  M. Nishino,et al.  PS-8, a minor carbapenem antibiotic. , 1982, The Journal of antibiotics.

[527]  J. Grutzner,et al.  Incorporation of (2RS,3S)-(4-13S)valine into cephalosporin C. , 1973, Journal of the American Chemical Society.

[528]  M. Marahiel,et al.  Nonribosomal peptide synthetases: structures and dynamics. , 2010, Current opinion in structural biology.

[529]  A. Danchin,et al.  Identification, Characterization, and Regulation of a Cluster of Genes Involved in Carbapenem Biosynthesis in Photorhabdus luminescens , 2002, Applied and Environmental Microbiology.

[530]  N. Hales,et al.  Aldehydes and Ketones as Dipolarophiles. Application to the Synthesis of Oxapenams , 1999 .

[531]  C. Townsend,et al.  A conserved tyrosyl-glutamyl catalytic dyad in evolutionarily linked enzymes: carbapenam synthetase and beta-lactam synthetase. , 2009, Biochemistry.

[532]  C. Schofield,et al.  The emzymatic ring expansion of penicillins to cephalosporins : side chain specificity , 1987 .

[533]  Z. Rao,et al.  Improvement of l-Arginine Production by Overexpression of a Bifunctional Ornithine Acetyltransferase in Corynebacterium crenatum , 2011, Applied biochemistry and biotechnology.

[534]  P. Rutledge,et al.  Unexpected Oxidation of a Depsipeptide Substrate Analogue in Crystalline Isopenicillin N Synthase , 2006, Chembiochem : a European journal of chemical biology.

[535]  R. Durbin,et al.  Role of glutamine synthetase adenylylation in the self-protection of Pseudomonas syringae subsp. "tabaci" from its toxin, tabtoxinine-beta-lactam , 1986, Journal of bacteriology.

[536]  Christopher J Schofield,et al.  Crystal structure of a clavaminate synthase–Fe(II)–2‐oxoglutarate–substrate–NO complex: evidence for metal centred rearrangements , 2002, FEBS letters.

[537]  G. Rolinson,et al.  OLIVANIC ACIDS, A FAMILY OF β-LACTAM ANTIBIOTICS WITH β-LACTAMASE INHIBITORY PROPERTIES PRODUCED BY STREPTOMYCES SPECIES , 1979 .

[538]  Rongfeng Li,et al.  Synthesis of (3S,5R)-carbapenam-3-carboxylic acid and its role in carbapenem biosynthesis and the stereoinversion problem. , 2003, Journal of the American Chemical Society.

[539]  Bin Ye,et al.  Tabtoxin-resistant protein: overexpression, purification, and characterization. , 2002, Protein expression and purification.

[540]  J. Martín,et al.  Two Oligopeptide-Permease-Encoding Genes in the Clavulanic Acid Cluster of Streptomyces clavuligerus Are Essential for Production of the β-Lactamase Inhibitor , 2004, Journal of bacteriology.

[541]  R. Ho,et al.  Dioxygen Activation by Enzymes with Mononuclear Non-Heme Iron Active Sites. , 1996, Chemical reviews.

[542]  M. D. Lloyd,et al.  Adipoyl-6-aminopenicillanic acid is a substrate for deacetoxycephalosporin C synthase (DAOCS) , 1996 .

[543]  J. Martín,et al.  A Novel Epimerization System in Fungal Secondary Metabolism Involved in the Conversion of Isopenicillin N into Penicillin N inAcremonium chrysogenum * , 2002, The Journal of Biological Chemistry.

[544]  J. Turner Tabtoxin, produced by Pseudomonas tabaci, decreases Nicotiana tabacum glutamine synthetase in vivo and causes accumulation of ammonia. , 1981 .

[545]  Axel A Brakhage,et al.  Fungal secondary metabolites - strategies to activate silent gene clusters. , 2011, Fungal genetics and biology : FG & B.

[546]  J. Ji,et al.  Saturation mutagenesis of Acremonium chrysogenum deacetoxy/deacetylcephalosporin C synthase R308 site confirms its role in controlling substrate specificity , 2011, Biotechnology Letters.

[547]  H. Imanaka,et al.  Incorporation of 14C-amino acids into nocardicin A by growing cells. , 1977 .

[548]  Y. Nozaki,et al.  Cephabacin M1-6, new 7-methoxycephem antibiotics of bacterial origin. I. A producing organism, fermentation, biological activities, and mode of action. , 1985, The Journal of antibiotics.

[549]  G. Liu,et al.  The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production , 2002, Molecular Genetics and Genomics.

[550]  R. Durbin,et al.  Self-protection of Pseudomonas syringae pv. "tabaci" from its toxin, tabtoxinine-beta-lactam , 1987, Journal of bacteriology.

[551]  C. Schmeisser,et al.  Metagenomics, biotechnology with non-culturable microbes , 2007, Applied Microbiology and Biotechnology.

[552]  J. Martín,et al.  A two-protein component 7 alpha-cephem-methoxylase encoded by two genes of the cephamycin C cluster converts cephalosporin C to 7-methoxycephalosporin C , 1995, Journal of bacteriology.

[553]  M. Jackson,et al.  Epithienamycins-novel beta-lactams related to thienamycin. I. Production and antibacterial activity. , 1981, The Journal of antibiotics.

[554]  B. Moore,et al.  Biochemical Characterization of a Prokaryotic Phenylalanine Ammonia Lyase , 2005, Journal of bacteriology.

[555]  C. Townsend,et al.  Mutational Analysis of nocK and nocL in the Nocardicin A Producer Nocardia uniformis , 2005, Journal of bacteriology.

[556]  T. Sim,et al.  Mutation of N304 to leucine in Streptomyces clavuligerus deacetoxycephalosporin C synthase creates an enzyme with increased penicillin analogue conversion. , 2001, Biochemical and biophysical research communications.

[557]  R. Sykes,et al.  Biosynthesis of monobactam compounds: origin of the carbon atoms in the beta-lactam ring , 1982, Antimicrobial Agents and Chemotherapy.

[558]  B. Christensen,et al.  Synthetic carbapenem antibiotics III. 1-Methyl thienamycin , 1985 .

[559]  J Richard Miller,et al.  Structural basis for effectiveness of siderophore-conjugated monocarbams against clinically relevant strains of Pseudomonas aeruginosa , 2010, Proceedings of the National Academy of Sciences.

[560]  J. Martín,et al.  Overexpression of the lat gene in Nocardia lactamdurans from strong heterologous promoters results in very high levels of lysine-6-aminotransferase and up to two-fold increase in cephamycin C production , 2000, Applied Microbiology and Biotechnology.

[561]  F. von Delft,et al.  Structural and mechanistic studies on γ-butyrobetaine hydroxylase. , 2010, Chemistry & biology.

[562]  J. Martín,et al.  Lysine is catabolized to 2-aminoadipic acid in Penicillium chrysogenum by an omega-aminotransferase and to saccharopine by a lysine 2-ketoglutarate reductase. Characterization of the omega-aminotransferase , 2005, Molecular Genetics and Genomics.

[563]  D. Heinz,et al.  Unusual carbon fixation gives rise to diverse polyketide extender units. , 2011, Nature chemical biology.

[564]  A. Girard,et al.  In vitro activity of the β-lactamase inhibitor NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases , 2009, The Journal of antimicrobial chemotherapy.

[565]  J. Martín,et al.  Utilization of ornithine and arginine as specific precursors of clavulanic acid , 1986, Applied and environmental microbiology.

[566]  M. Hashimoto,et al.  Nocardicin A, a new monocyclic beta-lactam antibiotic II. Structure determination of nocardicins A and B. , 1976, The Journal of antibiotics.

[567]  K. Nagashima,et al.  The structures of pluracidomycins, new carbapenem antibiotics. , 1982, Journal of antibiotics (Tokyo. 1968).

[568]  A. Demain,et al.  δ-(L-α-Aminoadipyl)-L-Cysteinyl-D-Valine Synthetase, the Multienzyme Integrating the Four Primary Reactions in β-Lactam Biosynthesis, as a Model Peptide Synthetase , 1993, Bio/Technology.

[569]  C. Schofield,et al.  The human oxygen sensing machinery and its manipulation. , 2008, Chemical Society reviews.

[570]  K. J. Wildonger,et al.  N-Acetimidoyl- and N-formimidoylthienamycin derivatives: antipseudomonal beta-lactam antibiotics. , 1979, Journal of medicinal chemistry.

[571]  J. Davies Clavulanic acid. The rearrangement of 4-substituted azetidonones derived from clavulanic acid to β-hydroxy pyrroles , 1982 .

[572]  K. Hewitson,et al.  Oxidation by 2-oxoglutarate oxygenases: non-haem iron systems in catalysis and signalling , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[573]  C. Townsend,et al.  The catalytic cycle of β-lactam synthetase observed by x-ray crystallographic snapshots , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[574]  R. A. Scott,et al.  X-ray absorption spectroscopic studies of the high-spin iron(II) active site of isopenicillin N synthase: evidence for Fe-S interaction in the enzyme-substrate complex. , 1992, Biochemistry.

[575]  H. True,et al.  Properties of β-Lactamase from Pseudomonas syringae , 1996, Current Microbiology.

[576]  C. Schofield,et al.  Substrate specificity of l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine synthetase from Cephalosporium acremonium: demonstration of the structure of several unnatural tripeptide products , 1994 .

[577]  J. Blanchard,et al.  Structure of the covalent adduct formed between Mycobacterium tuberculosis beta-lactamase and clavulanate. , 2008, Biochemistry.

[578]  C. Townsend,et al.  The fate of [2,3,3-2H3, 1,2-13C2]-d,l-glycerate in clavulanic acid biosynthesis , 1997 .

[579]  J. Pronk,et al.  The Penicillium chrysogenum aclA gene encodes a broad-substrate-specificity acyl-coenzyme A ligase involved in activation of adipic acid, a side-chain precursor for cephem antibiotics. , 2010, Fungal genetics and biology : FG & B.

[580]  T. Sim,et al.  Site-directed mutagenesis of arginine-89 supports the role of its guanidino side-chain in substrate binding by Cephalosporium acremonium isopenicillin N synthase. , 1999, FEMS microbiology letters.

[581]  J. Martín,et al.  A gene encoding lysine 6-aminotransferase, which forms the beta-lactam precursor alpha-aminoadipic acid, is located in the cluster of cephamycin biosynthetic genes in Nocardia lactamdurans , 1991, Journal of bacteriology.

[582]  C. Schofield,et al.  Isopenicilin N synthase: a new mode of reactivity , 1992 .

[583]  M. Muroi,et al.  Sulfazecin, a novel beta-lactam antibiotic of bacterial origin. Isolation and chemical characterization. , 1981, The Journal of antibiotics.

[584]  J. Luengo Enzymatic synthesis of hydrophobic penicillins. , 1995, The Journal of antibiotics.

[585]  S. Moroney,et al.  Stepwise ring closure in penicillin biosynthesis. Intitial β-lactam formation , 1984 .

[586]  Y. Nozaki,et al.  Binding of a non-β-lactam antibiotic to penicillin-binding proteins , 1987, Nature.

[587]  M. Young,et al.  Bacterial production of 7-formamidocephalosporins. Isolation and structure determination. , 1984, The Journal of antibiotics.

[588]  R. Cooper,et al.  The enzymes involved in biosynthesis of penicillin and cephalosporin; their structure and function. , 1993, Bioorganic & medicinal chemistry.

[589]  A. Luxen,et al.  Structural and mechanistic basis of penicillin-binding protein inhibition by lactivicins , 2007, Nature Chemical Biology.

[590]  D. Ivison,et al.  Structural and biochemical analyses reveal how ornithine acetyl transferase binds acidic and basic amino acid substrates. , 2011, Organic & biomolecular chemistry.

[591]  C. Schofield,et al.  Substrate specificity of cloned deacetoxycephalosporin C/deacetylcephalosporin C synthetase. , 1988, The Journal of antibiotics.

[592]  Axel A Brakhage,et al.  Regulation of penicillin biosynthesis in filamentous fungi. , 2004, Advances in biochemical engineering/biotechnology.

[593]  C. Townsend,et al.  Four enzymes define the incorporation of coenzyme A in thienamycin biosynthesis , 2008, Proceedings of the National Academy of Sciences.

[594]  A. Demain,et al.  δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACV synthetase): a multifunctional enzyme with broad substrate specificity for the synthesis of penicillin and cephalosporin precursors , 1987 .

[595]  Y. Saino,et al.  CARPETIMYCINS A AND B, NEW β-LACTAM ANTIBIOTICS , 1980 .

[596]  R. Mueller,et al.  Chemistry of Cephalosporin Antibiotics. III. Chemical Correlation of Penicillin and Cephalosporin Antibiotics , 1963 .

[597]  L. Liu,et al.  A possible role for acetylated intermediates in diaminopimelate and tabtoxinine-beta-lactam biosynthesis in Pseudomonas syringae pv. tabaci BR2.024 , 1997, Journal of bacteriology.

[598]  C. Townsend,et al.  Origin of the β-Lactam Carbons in Clavulanic Acid from an Unusual Thiamine Pyrophosphate-Mediated Reaction , 1999 .

[599]  B. Dijkstra,et al.  Structures of an isopenicillin N converting Ntn-hydrolase reveal different catalytic roles for the active site residues of precursor and mature enzyme. , 2010, Structure.

[600]  C. Townsend,et al.  Nocardicin A: stereochemical and biomimetic studies of monocyclic β-lactam formation , 1983 .

[601]  J. S. Wells,et al.  EM5400, a family of monobactam antibiotics produced by Agrobacterium radiobacter. I. Taxonomy, fermentation and biological properties. , 1982, The Journal of antibiotics.

[602]  M. Svenda,et al.  Insights into cephamycin biosynthesis: the crystal structure of CmcI from Streptomyces clavuligerus. , 2006, Journal of molecular biology.

[603]  S. Jensen,et al.  Enzymes Catalyzing the Early Steps of Clavulanic Acid Biosynthesis Are Encoded by Two Sets of Paralogous Genes inStreptomyces clavuligerus , 2000, Antimicrobial Agents and Chemotherapy.

[604]  I. Andersson,et al.  Crystal structures of an oligopeptide-binding protein from the biosynthetic pathway of the beta-lactamase inhibitor clavulanic acid. , 2010, Journal of molecular biology.

[605]  Maya Topf,et al.  Crystal Structure of Carbapenem Synthase (CarC)* , 2003, Journal of Biological Chemistry.

[606]  L. Aravind,et al.  Origin and evolution of peptide-modifying dioxygenases and identification of the wybutosine hydroxylase/hydroperoxidase , 2010, Nucleic acids research.

[607]  C. Townsend,et al.  Carboxymethylproline synthase from Pectobacterium carotorova: a multifaceted member of the crotonase superfamily. , 2004, Biochemistry.

[608]  C. Robinson,et al.  Oligomeric structure of proclavaminic acid amidino hydrolase: evolution of a hydrolytic enzyme in clavulanic acid biosynthesis. , 2002, The Biochemical journal.

[609]  H. Shibai,et al.  A novel naturally occurring carbapenem antibiotic, AB-110-D, produced by Kitasatosporia papulosa novo sp. , 1988, The Journal of antibiotics.

[610]  Erik Nordling,et al.  Short-chain dehydrogenases/reductases (SDR): the 2002 update. , 2003, Chemico-biological interactions.

[611]  D. Westlake,et al.  Analysis of penicillin N ring expansion activity from Streptomyces clavuligerus by ion-pair high-pressure liquid chromatography , 1983, Antimicrobial Agents and Chemotherapy.

[612]  M. Küenzi,et al.  Investigation of acetyl-CoA: Deacetylcephalosporin C O-acetyltransferase of Cephalosporium acremonium , 1985 .

[613]  J. Turner,et al.  Tabtoxin-induced symptoms are associated with the accumulation of ammonia formed during photorespiration , 1982 .

[614]  H. B. Woodruff,et al.  Thienamycin, a new beta-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. , 1979, The Journal of antibiotics.

[615]  J. Martín,et al.  Two Proteins with Ornithine Acetyltransferase Activity Show Different Functions in Streptomyces clavuligerus: Oat2 Modulates Clavulanic Acid Biosynthesis in Response to Arginine , 2004, Journal of bacteriology.

[616]  Y. Aharonowitz,et al.  Enzymatic characterisation of the multifunctional enzyme δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase from Streptomyces clavuligerus , 1992 .

[617]  J. Hajdu,et al.  Proteins of the penicillin biosynthesis pathway. , 1997, Current opinion in structural biology.

[618]  Samy O Meroueh,et al.  Structural aspects for evolution of beta-lactamases from penicillin-binding proteins. , 2003, Journal of the American Chemical Society.

[619]  J. Rétey,et al.  Studies on methylmalonyl-CoA mutase from Propionibacterium shermanii. , 1974, European journal of biochemistry.

[620]  J. Frère,et al.  Mechanistic Studies of the Inactivation of TEM-1 and P99 by NXL104, a Novel Non-β-Lactam β-Lactamase Inhibitor , 2010, Antimicrobial Agents and Chemotherapy.

[621]  K. Matsuyama,et al.  Cloning and disruption of the cefG gene encoding acetyl coenzyme A: deacetylcephalosporin C o-acetyltransferase from Acremonium chrysogenum. , 1992, Biochemical and biophysical research communications.

[622]  S. Jensen,et al.  A gene located downstream of the clavulanic acid gene cluster in Streptomyces clavuligerus ATCC 27064 encodes a putative response regulator that affects clavulanic acid production , 2009, Journal of Industrial Microbiology & Biotechnology.

[623]  S. Jensen,et al.  Five Additional Genes Are Involved in Clavulanic Acid Biosynthesis in Streptomyces clavuligerus , 2004, Antimicrobial Agents and Chemotherapy.

[624]  M. Marahiel,et al.  Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. , 2007, Structure.

[625]  G. Turner,et al.  δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillusnidulans , 1996, Molecular and General Genetics MGG.

[626]  S. Horinouchi,et al.  GriC and GriD Constitute a Carboxylic Acid Reductase Involved in Grixazone Biosynthesis in Streptomyces griseus , 2007, The Journal of Antibiotics.

[627]  R. Sykes,et al.  Discovery and development of the monobactams. , 1985, Reviews of infectious diseases.

[628]  Y. Nozaki,et al.  Cephabacins, new cephem antibiotics of bacterial origin. IV. Antibacterial activities, stability to beta-lactamases and mode of action. , 1984, The Journal of antibiotics.

[629]  Christopher J. Schofield,et al.  Structural origins of the selectivity of the trifunctional oxygenase clavaminic acid synthase , 2000, Nature Structural Biology.

[630]  J. Martín,et al.  The cephamycin biosynthetic genes pcbAB, encoding a large multidomain peptide synthetase, and pcbC of Nocardia lactamdurans are clustered together in an organization different from the same genes in Acremonium chrysogenum and Penicillium chrysogenum , 1991, Molecular microbiology.

[631]  J. Shewale,et al.  Molecular aspects of penicillin and cephalosporin acylases , 1992 .

[632]  M. Fischbach,et al.  Draft Genome Sequence of Streptomyces clavuligerus NRRL 3585, a Producer of Diverse Secondary Metabolites , 2010, Journal of bacteriology.

[633]  G. Scapin,et al.  Enzymology of bacterial lysine biosynthesis. , 1998, Advances in enzymology and related areas of molecular biology.

[634]  R. Elander Industrial production of β-lactam antibiotics , 2003, Applied Microbiology and Biotechnology.

[635]  S. Jensen,et al.  The Paralogous Pairs of Genes Involved in Clavulanic Acid and Clavam Metabolite Biosynthesis Are Differently Regulated in Streptomyces clavuligerus , 2004, Journal of bacteriology.

[636]  H. Kwon,et al.  Characterization of 2-Octenoyl-CoA Carboxylase/Reductase Utilizing pteB from Streptomyce avermitilis , 2011, Bioscience, biotechnology, and biochemistry.

[637]  J. Ravel,et al.  The Biosynthetic Gene Cluster for a Monocyclic β-Lactam Antibiotic, Nocardicin A , 2004 .

[638]  R. Breitling,et al.  The Sequence of a 1.8-Mb Bacterial Linear Plasmid Reveals a Rich Evolutionary Reservoir of Secondary Metabolic Pathways , 2010, Genome biology and evolution.

[639]  P. Hedden Recent advances in gibberellin biosynthesis , 1999 .

[640]  M. Küenzi,et al.  Partial purification and catalytic properties of a bifunctional enzyme in the biosynthetic pathway of beta-lactams in Cephalosporium acremonium. , 1984, The Journal of antibiotics.

[641]  D. K. Willis,et al.  Pathovar-specific requirement for the Pseudomonas syringae lemA gene in disease lesion formation , 1992, Applied and environmental microbiology.

[642]  E. Sauvage,et al.  Structural basis for the interaction of lactivicins with serine beta-lactamases. , 2010, Journal of medicinal chemistry.

[643]  A. Sasaki,et al.  Recent advances in carbapenem chemistry (review) , 1998 .

[644]  D. K. Willis,et al.  DNA sequence and transcriptional analysis of the tblA gene required for tabtoxin biosynthesis by Pseudomonas syringae , 1993, Applied and environmental microbiology.

[645]  R. Miller,et al.  High performance liquid chromatography (HPLC) of natural products. IV. The use of HPLC in biosynthetic studies of cephalosporin C in the cell-free system. , 1981, The Journal of antibiotics.

[646]  C. Schofield,et al.  The enzymatic conversion of exomethylene cephalosporin c into deacetyl cephalosporin c and the role of molecular oxygen in cephalosporin c biosynthesis , 1988 .

[647]  Lars-Oliver Essen,et al.  Crystal Structure of the Termination Module of a Nonribosomal Peptide Synthetase , 2008, Science.

[648]  C. Schofield,et al.  Inhibition of TEM-2 beta-lactamase from Escherichia coli by clavulanic acid: observation of intermediates by electrospray ionization mass spectrometry. , 1996, Biochemistry.

[649]  M. Marahiel,et al.  Chapter 13. Nonribosomal peptide synthetases mechanistic and structural aspects of essential domains. , 2009, Methods in enzymology.

[650]  J. S. Wells,et al.  Screening for beta-lactam antibiotics in nature. , 1985, The Journal of antibiotics.

[651]  M. D. Lloyd,et al.  Chemo-enzymatic synthesis of bicyclic γ-lactams using clavaminic acid synthase , 1997 .

[652]  M. Sebaihia,et al.  Analysis of the carbapenem gene cluster of Erwinia carotovora: definition of the antibiotic biosynthetic genes and evidence for a novel β‐lactam resistance mechanism , 1997, Molecular microbiology.

[653]  C. Townsend,et al.  Purification, Characterization, and Cloning of an S-Adenosylmethionine-dependent 3-Amino-3-carboxypropyltransferase in Nocardicin Biosynthesis* , 1998, The Journal of Biological Chemistry.

[654]  Rolf Müller,et al.  Formation of novel secondary metabolites by bacterial multimodular assembly lines: deviations from textbook biosynthetic logic. , 2005, Current opinion in chemical biology.

[655]  D. Livermore Discovery research: the scientific challenge of finding new antibiotics. , 2011, The Journal of antimicrobial chemotherapy.

[656]  J. Adrio,et al.  Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum , 2000, Nature Biotechnology.

[657]  M. Bradley,et al.  New Penicillins from Isopenicillin N Synthase. , 1991 .

[658]  Y. Nozaki,et al.  C-19393 S2 and H2, new carbapenem antibiotics. II. isolation and structures. , 1980, The Journal of antibiotics.

[659]  C. Schofield,et al.  Purification and initial characterization of an enzyme with deacetoxycephalosporin C synthetase and hydroxylase activities. , 1987, The Biochemical journal.

[660]  J. Martín,et al.  Interaction of the Two Proteins of the Methoxylation System Involved in Cephamycin C Biosynthesis , 1996, The Journal of Biological Chemistry.

[661]  J. Martín,et al.  The pcd Gene Encoding Piperideine-6-Carboxylate Dehydrogenase Involved in Biosynthesis of α-Aminoadipic Acid Is Located in the Cephamycin Cluster ofStreptomyces clavuligerus , 1998, Journal of bacteriology.

[662]  M. D. Lloyd,et al.  Isolation of dihydroclavaminic acid, an intermediate in the biosynthesis of clavulanic acid , 1991 .

[663]  Steven J. M. Jones,et al.  Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. , 1998, Chemistry & biology.

[664]  T. Kikuchi,et al.  Studies on the alkaloids of Pachysandra terminalis Sieb. et Zucc. (6). Structure of pachystermine-A and -B, novel type alkaloids having beta-lactam ring system. , 1965, Tetrahedron letters.

[665]  S. Jensen,et al.  5S clavam biosynthetic genes are located in both the clavam and paralog gene clusters in Streptomyces clavuligerus. , 2007, Chemistry & biology.

[666]  Terekhova Lp,et al.  [New producer of cephamycin C, Streptomyces filipinensis var. cephamycini var. nov]. , 1976 .

[667]  M. Sebaihia,et al.  Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. , 1995, Microbiology.

[668]  O. Hensens,et al.  Structure and absolute configuration of thienamycin , 1978 .