Analysis of series expansions for non-algebraic singularities

Existing methods of series analysis are largely designed to analyse the structure of algebraic singularities. Functions with such singularities have their $n^{th}$ coefficient behaving asymptotically as $A \cdot \mu^n \cdot n^g.$ Recently, a number of problems in statistical mechanics and combinatorics have been encountered in which the coefficients behave asymptotically as $B \cdot \mu^n \cdot \mu_1^{n^\sigma} \cdot n^g,$ where typically $\sigma = \frac{1}{2}$ or $\frac{1}{3}.$ Identifying this behaviour, and then extracting estimates for the critical parameters $B, \,\, \mu, \,\, \mu_1, \,\, \sigma, \,\, {\rm and} \,\, g$ presents a significant numerical challenge. We describe methods developed to meet this challenge.

[1]  Leonard Carlitz The coefficients of certain power series , 1955 .

[2]  J. Stoer,et al.  Fehlerabschätzungen und Extrapolation mit rationalen Funktionen bei Verfahren vom Richardson-Typus , 1964 .

[3]  C. Domb,et al.  On metastable approximations in co-operative assemblies , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  M. Fisher,et al.  Inhomogeneous differential approximants for power series , 1980 .

[5]  S. Whittington,et al.  A collapse transition in a directed walk model , 1992 .

[6]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[7]  F. David,et al.  Exact partition functions and correlation functions of multiple Hamiltonian walks on the Manhattan lattice , 1988 .

[8]  Self-avoiding walks and polygons on the triangular lattice , 2004, cond-mat/0409039.

[9]  Prellberg,et al.  New scaling form for the collapsed polymer phase. , 1993, Physical review letters.

[10]  Anthony J. Guttmann,et al.  Low-temperature series for the Ising model , 1970 .

[11]  B. Duplantier,et al.  Exact critical properties of two-dimensional dense self-avoiding walks , 1987 .

[12]  E. Wright On the Coefficients of Power Series Having Exponential Singularities , 1933 .

[14]  E. J. J. Rensburg,et al.  The statistical mechanics of interacting walks, polygons, animals and vesicles , 2015 .

[15]  S. Smirnov The connective constant of the honeycomb lattice equals 2+2 , 2012 .

[16]  E. M. Wright,et al.  On the Coefficients of Power Series having Exponential Singularities (Second Paper) , 1949 .

[17]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[18]  Anthony J. Guttmann,et al.  On a new method of series analysis in lattice statistics , 1972 .

[19]  William J. Norton Part III , 1916, Transactions of the American Institute of Electrical Engineers.

[20]  A. Guttmann,et al.  The Ising Susceptibility Scaling Function , 2010, 1012.5272.

[21]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[22]  D. L. Hunter,et al.  Methods of series analysis. III. Integral approximant methods , 1979 .

[23]  Bernard Nienhuis,et al.  Exact Critical Point and Critical Exponents of O ( n ) Models in Two Dimensions , 1982 .

[24]  A. Guttmann,et al.  A recurrence technique for confluent singularity analysis of power series , 1980 .

[25]  G. A. Baker APPLICATION OF THE PADE APPROXIMANT METHOD TO THE INVESTIGATION OF SOME MAGNETIC PROPERTIES OF THE ISING MODEL , 1961 .

[26]  David P. Landau,et al.  Phase transitions and critical phenomena , 1989, Computing in Science & Engineering.

[27]  H. Duminil-Copin,et al.  The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt2}$ , 2010, 1007.0575.

[28]  W. P. Orrick,et al.  The Susceptibility of the Square Lattice Ising Model: New Developments , 2001 .

[29]  I. Jensen,et al.  Series analysis , 2008 .