Thermoelectric efficiency has three Degrees of Freedom

Thermal energy can be directly converted to electrical energy as a result of thermoelectric effects. Because this conversion realises clean energy technology, such as waste heat recovery and energy harvesting, substantial efforts have been made to search for thermoelectric materials. Under the belief that the material figure of merit $zT$ represents the energy conversion efficiencies of thermoelectric devices, various high peak-$zT$ materials have been explored for half a century. However, thermoelectric properties vary greatly with temperature $T$, so the single value $zT$ does not represent device efficiency accurately. Here we show that the efficiency of thermoelectric conversion is completely determined by \emph{three} parameters $Z_{\mathrm{gen}}$, $\tau$, and $\beta$, which we call the \emph{thermoelectric degrees of freedom}. The $Z_{\mathrm{gen}}$, which is an average of material properties, is a generalisation of the traditional figure of merit. The $\tau$ and $\beta$, which reflect the gradients of the material properties, are proportional to escaped heat caused by the Thomson effect and asymmetric Joule heat, respectively. Our finding proposes new directions for achieving high thermoelectric efficiency; increasing one of the thermoelectric degrees of freedom results in higher efficiency. For example, thermoelectric efficiency can be enhanced up to 176\% by tuning the thermoelectric degrees of freedom in segmented legs, compared to the best efficiency of single-material legs.

[1]  H. Scherrer,et al.  Thermoelectric Properties and Electronic Structure of Bi- and Ag-Doped Mg2Si1−xGex Compounds , 2009 .

[2]  Zhifeng Ren,et al.  n-type thermoelectric material Mg2Sn0.75Ge0.25 for high power generation , 2015, Proceedings of the National Academy of Sciences.

[3]  F. Gao,et al.  Thermoelectric properties of Ce‐doped n‐type CexBi2 − xTe2.7Se0.3 nanocomposites , 2013 .

[4]  M. Kanatzidis,et al.  Enhanced thermoelectric properties of p-type nanostructured PbTe–MTe (M = Cd, Hg) materials , 2013 .

[5]  M. Kanatzidis,et al.  Controlling Metallurgical Phase Separation Reactions of the Ge0.87Pb0.13Te Alloy for High Thermoelectric Performance , 2013 .

[6]  G. J. Snyder,et al.  Self‐Tuning the Carrier Concentration of PbTe/Ag2Te Composites with Excess Ag for High Thermoelectric Performance , 2011 .

[7]  M. Kanatzidis,et al.  Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. , 2012, Journal of the American Chemical Society.

[8]  Qingjie Zhang,et al.  Synthesis and high temperature transport properties of Te-doped skutterudite compounds , 2012, Journal of Materials Science: Materials in Electronics.

[9]  Daehyun Wee,et al.  Analysis of thermoelectric energy conversion efficiency with linear and nonlinear temperature dependence in material properties , 2011 .

[10]  M. Kanatzidis,et al.  Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit. , 2010, Journal of the American Chemical Society.

[11]  X. Qin,et al.  Inhibition of minority transport for elevating the thermoelectric figure of merit of CuO/BiSbTe nanocomposites at high temperatures , 2016 .

[12]  Eric S. Toberer,et al.  High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping , 2010 .

[13]  H. Scherrer,et al.  Thermoelectric properties of semi-conducting compound CoSb3 doped with Pd and Te , 2009 .

[14]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[15]  C. Uher,et al.  Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites , 2008 .

[16]  L. Peng,et al.  Effect of annealing on thermoelectric properties of eutectic PbTe–Sb2Te3 composite with self-assembled lamellar structure , 2013 .

[17]  J. Sunderland,et al.  The influence of the Thomson effect on the performance of a thermoelectric power generator , 1964 .

[18]  H. Park,et al.  Tunable thermoelectric transport properties of Cu0.008Bi2Te2.7Se0.3 via control of the spark plasma sintering conditions , 2016 .

[19]  Sung‐Jin Kim,et al.  An alternative strategy to construct interfaces in bulk thermoelectric material: nanostructured heterophase Bi2Te3/Bi2S3 , 2013 .

[20]  Weishu Liu,et al.  Efficiency and output power of thermoelectric module by taking into account corrected Joule and Thomson heat , 2015 .

[21]  G. J. Snyder,et al.  High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb) , 2011 .

[22]  Zhifeng Ren,et al.  The great improvement effect of pores on ZT in Co1−xNixSb3 system , 2008 .

[23]  Qingjie Zhang,et al.  Thermoelectric Properties of Skutterudites Co4−xNixSb11.9−yTeySe0.1 , 2014, Journal of Electronic Materials.

[24]  W. Seo,et al.  Thermoelectric properties of I-doped Bi2Te2.85Se0.15 solid solutions , 2014 .

[25]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[26]  Chaoying Yu,et al.  Preparation and thermoelectric properties of inhomogeneous bismuth telluride alloyed nanorods , 2013 .

[27]  Xu Zhao,et al.  Thermoelectric properties of EuyCo4Sb12 filled skutterudites , 2008 .

[28]  A. Grytsiv,et al.  n-Type skutterudites (R,Ba,Yb)yCo4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT ≈ 2.0 , 2014 .

[29]  Min Zhou,et al.  The thermoelectric performance of anisotropic SnSe doped with Na , 2016 .

[30]  H. Hng,et al.  Synthesis and thermoelectric properties of double-filled skutterudites CeyYb0.5−yFe1.5Co2.5Sb12 , 2009 .

[31]  H. Hsu,et al.  Enhancing Figure of Merit of Bi0.5Sb1.5Te3 Through Nano-composite Approach , 2014 .

[32]  T. Liang,et al.  Ultra-fast synthesis and thermoelectric properties of Te doped skutterudites , 2014 .

[33]  M. Kanatzidis,et al.  Valence-band structure of highly efficient p -type thermoelectric PbTe-PbS alloys , 2013 .

[34]  G. J. Snyder,et al.  Enhanced thermoelectric performance in the very low thermal conductivity Ag2Se0.5Te0.5 , 2013 .

[35]  Gerald Wagner,et al.  High Thermoelectric Figure of Merit Values of Germanium Antimony Tellurides with Kinetically Stable Cobalt Germanide Precipitates. , 2015, Journal of the American Chemical Society.

[36]  Timothy P. Hogan,et al.  CsBi4Te6: A High‐Performance Thermoelectric Material for Low‐Temperature Applications. , 2000 .

[37]  Hee Seok Kim,et al.  The bridge between the materials and devices of thermoelectric power generators , 2017 .

[38]  M. Kanatzidis,et al.  Superior thermoelectric performance in PbTe-PbS pseudo-binary. Extremely low thermal conductivity and modulated carrier concentration , 2015 .

[39]  H. Li,et al.  Effect of Ce Substitution for Sb on the Thermoelectric Properties of AgSbTe2 Compound , 2014, Journal of Electronic Materials.

[40]  G. Qiao,et al.  Scalable solution-based synthesis of component-controllable ultrathin PbTe1−xSex nanowires with high n-type thermoelectric performance , 2017 .

[41]  Tiejun Zhu,et al.  Tuning Multiscale Microstructures to Enhance Thermoelectric Performance of n‐Type Bismuth‐Telluride‐Based Solid Solutions , 2015 .

[42]  Cheng Chang,et al.  Multiple Converged Conduction Bands in K2Bi8Se13: A Promising Thermoelectric Material with Extremely Low Thermal Conductivity. , 2016, Journal of the American Chemical Society.

[43]  Junyou Yang,et al.  Effect of processing parameters on formation and thermoelectric properties of La0.4FeCo3Sb12 skutterudite by MA–HP method , 2009 .

[44]  G. J. Snyder,et al.  Nanocomposites from Solution‐Synthesized PbTe‐BiSbTe Nanoheterostructure with Unity Figure of Merit at Low‐Medium Temperatures (500–600 K) , 2017, Advanced materials.

[45]  M. Dariel,et al.  Thermoelectric Properties Evolution of Spark Plasma Sintered (Ge0.6Pb0.3Sn0.1)Te Following a Spinodal Decomposition , 2010 .

[46]  B. Ge,et al.  Promoting SnTe as an Eco‐Friendly Solution for p‐PbTe Thermoelectric via Band Convergence and Interstitial Defects , 2017, Advanced materials.

[47]  K. Biswas,et al.  Sb deficiencies control hole transport and boost the thermoelectric performance of p-type AgSbSe2 , 2015 .

[48]  Qian Zhang,et al.  Enhancement of Thermoelectric Performance of n‐Type PbSe by Cr Doping with Optimized Carrier Concentration , 2015 .

[49]  C. Klinke,et al.  Thermoelectric properties of lead chalcogenide core-shell nanostructures. , 2011, ACS nano.

[50]  J. Tani,et al.  Thermoelectric properties of Sb-doped Mg 2Si semiconductors , 2007 .

[51]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[52]  Terry M. Tritt,et al.  Preferential Scattering by Interfacial Charged Defects for Enhanced Thermoelectric Performance in Few-layered n-type Bi2Te3 , 2013, Scientific Reports.

[53]  Soon-Mok Choi,et al.  Nanograined thermoelectric Bi2Te2.7Se0.3 with ultralow phonon transport prepared from chemically exfoliated nanoplatelets , 2013 .

[54]  Zeming He,et al.  Thermoelectric properties of hot-pressed skutterudite CoSb3 , 2007 .

[55]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[56]  Q. Shen,et al.  Preparation and Thermoelectric Properties of Bi-Doped Mg2Si Nanocomposites , 2009 .

[57]  Xingyu Gao,et al.  Ultrahigh Thermoelectric Performance by Electron and Phonon Critical Scattering in Cu2Se1‐xIx , 2013, Advanced materials.

[58]  C. Uher,et al.  Thermoelectric properties of p-type YbxLayFe2.7Co1.3Sb12 double-filled skutterudites , 2013 .

[59]  G. J. Snyder,et al.  Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride , 2011 .

[60]  J. Sharp Some properties of GeTe-based thermoelectric alloys , 2003, Proceedings ICT'03. 22nd International Conference on Thermoelectrics (IEEE Cat. No.03TH8726).

[61]  H. W. Lee,et al.  Influence of Mn on crystal structure and thermoelectric properties of GeTe compounds , 2014, Electronic Materials Letters.

[62]  M. Dresselhaus,et al.  Power factor enhancement by modulation doping in bulk nanocomposites. , 2011, Nano letters.

[63]  Jingfeng Li,et al.  PbTe-based thermoelectric nanocomposites with reduced thermal conductivity by SiC nanodispersion , 2014 .

[64]  Tiejun Zhu,et al.  Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1 , 2015 .

[65]  S. Suwas,et al.  Thermoelectric properties of Fe0.2Co3.8Sb12−xTex skutterudites , 2013 .

[66]  K. Nishio,et al.  Composition dependent thermoelectric properties of sintered Mg2Si1−xGex (x = 0 to 1) initiated from a melt-grown polycrystalline source , 2007 .

[67]  S. Schlecht,et al.  Thermoelectric Properties of Nanostructured Bismuth-Doped Lead Telluride Bix(PbTe)1−x Prepared by Co-Ball-Milling , 2014, Journal of Electronic Materials.

[68]  R. Sankar,et al.  Influence of nanoscale Ag2Te precipitates on the thermoelectric properties of the Sn doped P-type AgSbTe2 compound , 2014 .

[69]  C. Uher,et al.  Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni , 2002 .

[70]  G. J. Snyder,et al.  Stabilizing the Optimal Carrier Concentration for High Thermoelectric Efficiency , 2011, Advanced materials.

[71]  G. J. Snyder,et al.  Optimum Carrier Concentration in n‐Type PbTe Thermoelectrics , 2014 .

[72]  T. Hyeon,et al.  Extraordinary Off-Stoichiometric Bismuth Telluride for Enhanced n-Type Thermoelectric Power Factor. , 2016, Journal of the American Chemical Society.

[73]  B. Paul,et al.  Thermoelectric properties of PbSe0.5Te0.5: x (PbI2) with endotaxial nanostructures: a promising n-type thermoelectric material , 2013, Nanotechnology.

[74]  Cuncheng Li,et al.  Enhanced thermoelectric performance of Cu2Se/Bi0.4Sb1.6Te3 nanocomposites at elevated temperatures , 2016 .

[75]  W. Seo,et al.  Preparation and Thermoelectric Properties of Doped Bi2Te3-Bi2Se3 Solid Solutions , 2014, Journal of Electronic Materials.

[76]  Qian Zhang,et al.  Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe(1-y)Se(y). , 2012, Journal of the American Chemical Society.

[77]  X. Zhao,et al.  Natural Microstructure and Thermoelectric Performance of (GeTe)80(AgySb2−yTe3−y)20 , 2010 .

[78]  I. V. Korobeinikov,et al.  Enhanced power factor and high-pressure effects in (Bi,Sb)2(Te,Se)3 thermoelectrics , 2015 .

[79]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[80]  Yuanhua Lin,et al.  High Thermoelectric Performance of Nanostructured In2O3‐Based Ceramics , 2012 .

[81]  W. S. Liu,et al.  Anomalous transport and thermoelectric performances of CuAgSe compounds , 2014, 1510.06616.

[82]  M. Oh,et al.  Thermoelectric properties of AgPbmSbTem+2 (12≤ m≤26) at elevated temperature , 2009 .

[83]  Kyu Hyoung Lee,et al.  Enhancing the Thermoelectric Properties of p-Type Bulk Bi-Sb-Te Nanocomposites via Solution-Based Metal Nanoparticle Decoration , 2013, Journal of Electronic Materials.

[84]  M. Kanatzidis,et al.  Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe. , 2015 .

[85]  G. J. Snyder,et al.  Thermoelectric properties of p-type polycrystalline SnSe doped with Ag , 2014 .

[86]  T. Sun,et al.  Nanostructures in high-performance (GeTe)x(AgSbTe2)100−x thermoelectric materials , 2008, Nanotechnology.

[87]  X. Zhao,et al.  Thermoelectric properties of non-stoichiometric AgSbTe2 based alloys with a small amount of GeTe addition , 2012 .

[88]  J. Goodenough,et al.  Suppressing the bipolar contribution to the thermoelectric properties of Mg2Si0.4Sn0.6 by Ge substitution , 2015 .

[89]  B. Iversen,et al.  Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands , 2017, Nature Communications.

[90]  G. J. Snyder,et al.  Figure of merit ZT of a thermoelectric device defined from materials properties , 2017 .

[91]  Jun Jiang,et al.  Enhanced thermoelectric figure of merit in p-type Bi0.48Sb1.52Te3 alloy with WSe2 addition , 2014 .

[92]  Heng Wang,et al.  Synthesis and transport property of AgSbTe2 as a promising thermoelectric compound , 2008 .

[93]  I. Veremchuk,et al.  Thermoelectric properties of Eu- and Na-substituted SnTe , 2015 .

[94]  G. J. Snyder,et al.  TAGS-related indium compounds and their thermoelectric properties – the solid solution series (GeTe)xAgInySb1−yTe2 (x = 1–12; y = 0.5 and 1) , 2014 .

[95]  Woochul Kim,et al.  Band Degeneracy, Low Thermal Conductivity, and High Thermoelectric Figure of Merit in SnTe-CaTe Alloys , 2016 .

[96]  Suhuai Wei,et al.  High thermoelectric performance in copper telluride , 2015 .

[97]  Jingfeng Li,et al.  Thermoelectric property of fine-grained CoSb3 skutterudite compound fabricated by mechanical alloying and spark plasma sintering , 2007 .

[98]  X. Zhao,et al.  In situ synthesis and thermoelectric properties of La-doped Mg2(Si, Sn) composites , 2008 .

[99]  Vinayak P. Dravid,et al.  Phonon Scattering and Thermal Conductivity in p‐Type Nanostructured PbTe‐BaTe Bulk Thermoelectric Materials , 2012 .

[100]  Rama Venkatasubramanian,et al.  Analysis of Ce‐ and Yb‐Doped TAGS‐85 Materials with Enhanced Thermoelectric Figure of Merit , 2011 .

[101]  B. Ryu,et al.  Computational Simulations of Thermoelectric Transport Properties , 2016 .

[102]  E. Hazan,et al.  Effective Electronic Mechanisms for Optimizing the Thermoelectric Properties of GeTe‐Rich Alloys , 2015 .

[103]  Haijun Wu,et al.  Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics , 2014 .

[104]  Q. Lu,et al.  In situ synthesis and thermoelectric properties of (Fe/Ni)xCo4−xSb12 compounds by SPS , 2008 .

[105]  Soon-Mok Choi,et al.  Transport and thermoelectric properties of Bi2Te2.7Se0.3 prepared by mechanical alloying and hot pressing , 2015, Journal of the Korean Physical Society.

[106]  M. Oh,et al.  Effect of ball milling time on the thermoelectric properties of p-type (Bi,Sb)2Te3 , 2013 .

[107]  R. Wolfe,et al.  Thermoelectric properties of FeSi , 1965 .

[108]  Michihiro Ohta,et al.  Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules , 2016 .

[109]  Lianjun Wang,et al.  Improved Thermoelectric Performance of Silver Nanoparticles‐Dispersed Bi2Te3 Composites Deriving from Hierarchical Two‐Phased Heterostructure , 2015 .

[110]  Jingfeng Li,et al.  Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure , 2016 .

[111]  R. Mallik,et al.  Transport properties on Sn-filled and Te-doped CoSb3 skutterudites , 2008 .

[112]  G. J. Snyder,et al.  Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics , 2015, Science.

[113]  Sukhvir Singh,et al.  Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features , 2015 .

[114]  Thermoelectric properties of layered rare earth copper oxides , 2003 .

[115]  M. Kanatzidis,et al.  Thermoelectric enhancement in PbTe with K or Na codoping from tuning the interaction of the light- and heavy-hole valence bands , 2010, 1007.1637.

[116]  T. Iida,et al.  Non-wetting crystal growth of Mg2Si by vertical Bridgman method and thermoelectric characteristics , 2007 .

[117]  Thermoelectric power factor of Bi-Sb-Te and Bi-Te-Se alloys and doping strategy: First-principles study , 2017, 1704.01723.

[118]  Isao Tanaka,et al.  Distributions of phonon lifetimes in Brillouin zones , 2015, 1501.00691.

[119]  M. Kanatzidis,et al.  Lead‐Free Thermoelectrics: High Figure of Merit in p‐type AgSnmSbTem+2 , 2012 .

[120]  C. Uher,et al.  Thermoelectric properties of Ag-doped Cu2Se and Cu2Te , 2013 .

[121]  T. Hirai,et al.  Thermoelectric Properties of Te-doped CoSb3 by spark plasma sintering , 2005 .

[122]  Han Li,et al.  Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure , 2007 .

[123]  G. J. Snyder,et al.  State of the art Ag50-xSbxSe50-yTey alloys: Their high zT values, microstructures and related phase equilibria , 2015 .

[124]  Heng Wang,et al.  Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe , 2016, Science.

[125]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[126]  Y. Jeong,et al.  Effect of hydrogen annealing of ball-milled Bi0.5Sb1.5Te3 powders on thermoelectric properties , 2017 .

[127]  Min Zhou,et al.  Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering , 2008 .

[128]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[129]  Transport properties of Ni, Co, Fe, Mn doped Cu0.01Bi2Te2.7Se0.3 for thermoelectric device applications , 2012, 1205.6377.

[130]  Zinovy Dashevsky,et al.  Powder metallurgical processing of functionally graded p-Pb1−xSnxTe materials for thermoelectric applications , 2007 .

[131]  G. P. Srivastava,et al.  Thermoelectric properties ofn-type Bi2(Te0.85Se0.15)3single crystals doped with CuBr and SbI3 , 2012 .

[132]  J. Tu,et al.  Thermoelectric properties of Yb0.15Co4Sb12 based nanocomposites with CoSb3 nano-inclusion , 2008 .

[133]  M. Dresselhaus,et al.  Enhanced thermoelectric properties of solution grown Bi2Te(3-x)Se(x) nanoplatelet composites. , 2012, Nano letters.

[134]  Hui Sun,et al.  High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. , 2014, Journal of the American Chemical Society.

[135]  Min Zhou,et al.  Nanostructured AgPb(m)SbTe(m+2) system bulk materials with enhanced thermoelectric performance. , 2008, Journal of the American Chemical Society.

[136]  Jun Jiang,et al.  Stabilization of Thermoelectric Properties of the Cu/Bi0.48Sb1.52Te3 Composite for Advantageous Power Generation , 2017, Journal of Electronic Materials.

[137]  K. Esfarjani,et al.  Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide , 2011 .

[138]  Jihui Yang,et al.  High thermoelectric performance in Te-free (Bi,Sb)2Se3via structural transition induced band convergence and chemical bond softening , 2016 .

[139]  Yongjun Tian,et al.  HPHT synthesis and thermoelectric properties of CoSb3 and Fe0.6Co3.4Sb12 skutterudites , 2009 .

[140]  W. Seo,et al.  Preparation and thermoelectric properties of Bi2Te3-Bi2Se3 solid solutions , 2014 .

[141]  Jonathan D'Angelo,et al.  High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2. , 2006, Angewandte Chemie.

[142]  J. Bahk,et al.  Large enhancement in the thermoelectric properties of Pb0.98Na0.02Te by optimizing the synthesis conditions , 2013 .

[143]  W. Seo,et al.  Preparation and Thermoelectric Properties of n-Type Bi2Te2.7Se0.3:Dm , 2014, Journal of Electronic Materials.

[144]  G. J. Snyder,et al.  Optimization of thermoelectric efficiency in SnTe: the case for the light band. , 2014, Physical chemistry chemical physics : PCCP.

[145]  M. Kanatzidis,et al.  High-temperature thermoelectric properties of n-type PbSe doped with Ga, In, and Pb , 2011 .

[146]  Haiyang Li,et al.  Enhanced thermoelectric properties of (PbTe)0.88(PbS)0.12 composites by Bi doping , 2013 .

[147]  Jihui Yang,et al.  Minimum Thermal Conductivity in Weak Topological Insulators with Bismuth‐Based Stack Structure , 2016 .

[148]  C. Uher,et al.  Enhanced: ZT and attempts to chemically stabilize Cu2Se via Sn doping , 2016 .

[149]  Xin Liang,et al.  Enhanced thermoelectric performance of n-type transformable AgBiSe2 polymorphs by indium doping , 2016 .

[150]  Q. Shen,et al.  Fabrication and thermoelectric properties of Mg2Si1−xSnx (0 ≤ x ≤ 1.0) solid solutions by solid state reaction and spark plasma sintering , 2009 .

[151]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[152]  G. J. Snyder,et al.  Alloying to increase the band gap for improving thermoelectric properties of Ag2Te , 2011 .

[153]  G. J. Snyder,et al.  High-temperature thermoelectric properties of Cu1.97Ag0.03Se1+y , 2014, Materials for Renewable and Sustainable Energy.

[154]  T. Hirai,et al.  Synthesis and thermoelectric properties of filled skutterudite compounds CeyFexCo4−xSb12 by solid state reaction , 2001 .

[155]  B. Ge,et al.  Tellurium as a high-performance elemental thermoelectric , 2016, Nature Communications.

[156]  Xinbing Zhao,et al.  High-performance half-Heusler thermoelectric materials Hf1−x ZrxNiSn1−ySby prepared by levitation melting and spark plasma sintering , 2009 .

[157]  Yue Chen,et al.  Interstitial Point Defect Scattering Contributing to High Thermoelectric Performance in SnTe , 2016 .

[158]  A. Grytsiv,et al.  Thermoelectric properties of novel skutterudites with didymium: DDy(Fe1−xCox)4Sb12 and DDy(Fe1−xNix)4Sb12 , 2010 .

[159]  Xianli Su,et al.  Mechanically Robust BiSbTe Alloys with Superior Thermoelectric Performance: A Case Study of Stable Hierarchical Nanostructured Thermoelectric Materials , 2015 .

[160]  Y. Furukawa,et al.  Temperature dependence of thermoelectric properties of Mg2Si0.6Ge0.4 , 1992 .

[161]  Zhong Bin,et al.  High superionic conduction arising from aligned large lamellae and large figure of merit in bulk Cu1.94Al0.02Se , 2014 .

[162]  B. Ryu,et al.  Enhancement of the Thermoelectric Performance of Bi0.4Sb1.6Te3 Alloys by In and Ga Doping , 2013, Journal of Electronic Materials.

[163]  Haotian Fan,et al.  Enhanced thermoelectric performance of PbSe co-doped with Ag and Sb , 2015 .

[164]  Hisao Nakamura,et al.  A supercell approach to the doping effect on the thermoelectric properties of SnSe. , 2015, Physical chemistry chemical physics : PCCP.

[165]  G. J. Snyder,et al.  Copper ion liquid-like thermoelectrics. , 2012, Nature materials.

[166]  M. Kanatzidis,et al.  Optimization of the Electronic Band Structure and the Lattice Thermal Conductivity of Solid Solutions According to Simple Calculations: A Canonical Example of the Mg2Si1–x–yGexSny Ternary Solid Solution , 2016 .

[167]  Sean Li,et al.  Heterogeneous Distribution of Sodium for High Thermoelectric Performance of p‐type Multiphase Lead‐Chalcogenides , 2015 .

[168]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[169]  X. Zhao,et al.  Effects of Ball-Milling Atmosphere on the Thermoelectric Properties of TAGS-85 Compounds , 2009 .

[170]  B. Liao,et al.  High thermoelectric performance by resonant dopant indium in nanostructured SnTe , 2013, Proceedings of the National Academy of Sciences.

[171]  X. Duan,et al.  Effects of Ag-Doping on Thermoelectric Properties of Ca(2−x)AgxSi Alloys , 2017, Journal of Electronic Materials.

[172]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[173]  New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12−xXx (X = Ge, Sn) reaching ZT > 1.3 , 2015, 1702.04498.

[174]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[175]  S. Yamanaka,et al.  Effect of (Pb,Ge)Te Addition on the Phase Stability and the Thermoelectric Properties of AgSbTe 2 , 2010 .

[176]  R. W. Ure,et al.  Calculation of Efficiency of Thermoelectric Devices , 1960 .

[177]  Ali Shakouri,et al.  Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking. , 2015, Nano letters.

[178]  Zhiwei Chen,et al.  Significant band engineering effect of YbTe for high performance thermoelectric PbTe , 2015 .

[179]  Hui Wang,et al.  Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer , 2012 .

[180]  Andrew A. Wereszczak,et al.  Transport and mechanical property evaluation of (AgSbTe )1-x(GeTe)x (x = 0.80, 0.82, 0.85, 0.87, 0.90) , 2009 .

[181]  Hsin Wang,et al.  Complex role for thallium in PbTe:Tl from local probe studies , 2013 .

[182]  G. J. Snyder,et al.  High thermoelectric figure of merit in heavy hole dominated PbTe , 2011 .

[183]  C. Uher,et al.  Enhanced thermoelectric properties of n-type Mg2.16(Si0.4Sn0.6)1−ySby due to nano-sized Sn-rich precipitates and an optimized electron concentration , 2012 .

[184]  Y. Sung,et al.  Spinodally Decomposed PbSe-PbTe Nanoparticles for High-Performance Thermoelectrics: Enhanced Phonon Scattering and Unusual Transport Behavior. , 2016, ACS nano.

[185]  B. Ryu,et al.  Thermoelectric properties of Bi2Te2.7Se0.3 nanocomposites embedded with MgO nanoparticles , 2016 .

[186]  W. Jo,et al.  Simultaneous improvement in electrical and thermal properties of interface-engineered BiSbTe nanostructured thermoelectric materials , 2016 .

[187]  Li-Min Wang,et al.  High-pressure synthesis of phonon-glass electron-crystal featured thermoelectric LixCo4Sb12 , 2012 .

[188]  M. Kanatzidis,et al.  Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3 , 2014, Nature Communications.

[189]  Timothy P. Hogan,et al.  Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. , 2012, Journal of the American Chemical Society.

[190]  H. W. Lee,et al.  Control of thermoelectric properties through the addition of Ag in the Bi0.5Sb1.5Te3Alloy , 2010 .

[191]  Weishu Liu,et al.  Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb , 2008 .

[192]  G. J. Snyder,et al.  Traversing the Metal‐Insulator Transition in a Zintl Phase: Rational Enhancement of Thermoelectric Efficiency in Yb14Mn1−xAlxSb11 , 2008 .

[193]  Myung-Ho Kim,et al.  Improvement of thermoelectric properties through controlling the carrier concentration of AgPb18SbTe20 alloys by Sb addition , 2012, Electronic Materials Letters.

[194]  Xing Zhang,et al.  Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites , 2005 .

[195]  Peter Rogl,et al.  A new generation of p-type didymium skutterudites with high ZT , 2011 .

[196]  Pierre F. P. Poudeu,et al.  Enhancement in Thermoelectric Figure of Merit in Nanostructured Bi2Te3 with Semimetal Nanoinclusions , 2011 .

[197]  Jingfeng Li,et al.  Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering , 2007 .

[198]  Y. Okamoto,et al.  Temperature dependence of the thermoelectric properties of Si doped SiC , 1998 .

[199]  Qian Zhang,et al.  Thermoelectric Property Studies on Cu‐Doped n‐type CuxBi2Te2.7Se0.3 Nanocomposites , 2011 .

[200]  Jin Yu,et al.  Twin-driven thermoelectric figure-of-merit enhancement of Bi2Te3 nanowires. , 2014, Nanoscale.

[201]  W. S. Liu,et al.  Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. , 2010, Nano letters.

[202]  Xiangyang Huang,et al.  High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy , 2010 .

[203]  Hohyun Lee,et al.  Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. , 2008, Nano letters.

[204]  T. Zhu,et al.  Nanostructuring and thermoelectric properties of semiconductor tellurides , 2007, 2007 26th International Conference on Thermoelectrics.

[205]  S. Suwas,et al.  Thermoelectric properties of In and I doped PbTe , 2016 .

[206]  S. Yamanaka,et al.  Thermoelectric Properties of Tl9BiTe6. , 2003 .

[207]  Cheol-hee Park,et al.  Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4 , 2013 .

[208]  G. Dui,et al.  Revisiting the temperature dependence in material properties and performance of thermoelectric materials , 2017 .

[209]  B. Ryu,et al.  Nonlocal Problems Arising in Thermoelectrics , 2014 .

[210]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[211]  J. Karczewski,et al.  Structure and Thermoelectric Properties of Te-Ag-Ge-Sb (TAGS) Materials Obtained by Reduction of Melted Oxide Substrates , 2016, Journal of Electronic Materials.

[212]  Xinbing Zhao,et al.  High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials , 2008 .

[213]  Markus Nentwig,et al.  Nanostructures in Te/Sb/Ge/Ag (TAGS) thermoelectric materials induced by phase transitions associated with vacancy ordering. , 2014, Inorganic chemistry.

[214]  M. Kanatzidis,et al.  Improvement in the Thermoelectric Figure of Merit by La/Ag Cosubstitution in PbTe , 2009 .

[215]  Muhammet S. Toprak,et al.  Nanostructured Co1−xNix(Sb1−yTey)3 skutterudites: Theoretical modeling, synthesis and thermoelectric properties , 2005 .

[216]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[217]  Y. Imai,et al.  The effect of Bi doping on thermoelectric properties of Mg2Si0.5Sn0.5 , 2007, 2007 26th International Conference on Thermoelectrics.

[218]  T. Hyeon,et al.  n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. , 2012, Nano letters.

[219]  Enhanced thermoelectric performance driven by high-temperature phase transition in the phase change material Ge4SbTe5 , 2015 .

[220]  Heng Wang,et al.  Low effective mass leading to high thermoelectric performance , 2011 .

[221]  Kenneth McEnaney,et al.  High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts , 2015 .

[222]  Qingjie Zhang,et al.  Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure , 2008 .

[223]  Z. Dashevsky,et al.  In-doped Pb0.5Sn0.5Te p-type samples prepared by powder metallurgical processing for thermoelectric applications , 2007 .

[224]  J. Si,et al.  High thermoelectric properties of n-type Cd-doped PbTe prepared by melt spinning , 2016 .

[225]  T. Hirai,et al.  Thermoelectric figure of merit of impurity doped and hot-pressed magnesium silicide elements , 1998, Seventeenth International Conference on Thermoelectrics. Proceedings ICT98 (Cat. No.98TH8365).

[226]  Y. Kubota,et al.  Enhanced thermoelectric performance of In-substituted GeSb6Te10 with homologous structure , 2014 .

[227]  Minwoo Park,et al.  Surfactant‐Free Scalable Synthesis of Bi2Te3 and Bi2Se3 Nanoflakes and Enhanced Thermoelectric Properties of Their Nanocomposites , 2013, Advanced materials.

[228]  G. J. Snyder,et al.  Thermoelectric efficiency and compatibility. , 2003, Physical review letters.

[229]  J. Lee,et al.  Fe-Doping Effect on Thermoelectric Properties of p-Type Bi0.48Sb1.52Te3 , 2015, Materials.

[230]  Shumin Wang,et al.  Thermoelectric properties of SnSe compound , 2015 .

[231]  X. Zhao,et al.  Synthesis of Nanocomposites with Improved Thermoelectric Properties , 2009 .

[232]  Qingjie Zhang,et al.  Structure and Transport Properties of Double-Doped CoSb2.75Ge0.25–xTex (x = 0.125–0.20) with in Situ Nanostructure , 2011 .

[233]  Hohyun Lee,et al.  Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy , 2008 .

[234]  M. Oh,et al.  Effect of Ag or Sb addition on the thermoelectric properties of PbTe , 2010 .

[235]  Dong Hyun Lee,et al.  Holey silicon as an efficient thermoelectric material. , 2010, Nano letters.

[236]  Yue Wu,et al.  Synthesis and thermoelectric properties of compositional-modulated lead telluride-bismuth telluride nanowire heterostructures. , 2013, Nano letters.

[237]  A. Bali,et al.  Thermoelectric Properties of Two-Phase PbTe with Indium Inclusions , 2014, Journal of Electronic Materials.

[238]  Heng Wang,et al.  Tuning bands of PbSe for better thermoelectric efficiency , 2014 .

[239]  L. D. Chen,et al.  Synthesis and thermoelectric properties of Sr-filled skutterudite SryCo4Sb12 , 2006 .

[240]  U. Waghmare,et al.  High Power Factor and Enhanced Thermoelectric Performance of SnTe-AgInTe2: Synergistic Effect of Resonance Level and Valence Band Convergence. , 2016, Journal of the American Chemical Society.

[241]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[242]  Jiong Yang,et al.  Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12 , 2009 .

[243]  U. Waghmare,et al.  Mg Alloying in SnTe Facilitates Valence Band Convergence and Optimizes Thermoelectric Properties , 2015 .

[244]  Jun Luo,et al.  Synthesis and thermoelectric properties of Mn-doped AgSbTe2 compounds , 2012 .

[245]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[246]  Jun-ichi Tani,et al.  Thermoelectric properties of Bi-doped Mg2Si semiconductors , 2005 .

[247]  Wenyu Zhao,et al.  Understanding of the Extremely Low Thermal Conductivity in High‐Performance Polycrystalline SnSe through Potassium Doping , 2016 .

[248]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[249]  G. J. Snyder,et al.  Thermopower enhancement in Pb1−xMnxTe alloys and its effect on thermoelectric efficiency , 2012 .

[250]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[251]  Wei Liu,et al.  Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions. , 2012, Physical review letters.

[252]  Hui Sun,et al.  Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide , 2014, Nature Communications.

[253]  Qingyu Yan,et al.  p-type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit , 2010 .

[254]  Haijun Wu,et al.  Strategy to optimize the overall thermoelectric properties of SnTe via compositing with its property-counter CuInTe2 , 2017 .

[255]  W. Seo,et al.  Preparation and thermoelectric properties of iodine-doped Bi2Te3-Bi2Se3 solid solutions , 2014, Journal of the Korean Physical Society.

[256]  M. Kanatzidis,et al.  Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping. , 2014, Journal of the American Chemical Society.

[257]  Han Li,et al.  Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances , 2013, Nanotechnology.

[258]  Tiejun Zhu,et al.  Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials , 2015, Nature communications.

[259]  Gang Chen,et al.  Effect of aluminum on the thermoelectric properties of nanostructured PbTe , 2013, Nanotechnology.

[260]  Qingjie Zhang,et al.  High temperature thermoelectric transport properties of double-atom-filled clathrate compounds YbxBa8−xGa16Ge30 , 2008 .

[261]  J. Miller Numerical Analysis , 1966, Nature.

[262]  Emil Sandoz-Rosado,et al.  On the Thomson effect in thermoelectric power devices , 2013 .

[263]  Xiangyang Huang,et al.  The high temperature thermoelectric performances of Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01 alloy with nanophase inclusions , 2006 .

[264]  Tiejun Zhu,et al.  Shifting up the optimum figure of merit of p -type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction , 2014 .

[265]  F. Disalvo,et al.  Transport Properties of Undoped and Br‐Doped PbTe Sintered at High‐Temperature and Pressure ≥ 4.0 GPa. , 2010 .

[266]  H. Kleinke,et al.  Mg2Si-Based Materials for the Thermoelectric Energy Conversion , 2016 .

[267]  D. K. Aswal,et al.  Thermoelectric performance of layered SrxTiSe2 above 300 K , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[268]  Youwei Du,et al.  Realizing High Figure of Merit in Phase-Separated Polycrystalline Sn1-xPbxSe. , 2016, Journal of the American Chemical Society.

[269]  J. Tu,et al.  Improved thermoelectric figure of merit in n-type CoSb3 based nanocomposites , 2007 .

[270]  Xianfan Xu,et al.  Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. , 2012, Nano letters.

[271]  A. Banik,et al.  AgI alloying in SnTe boosts the thermoelectric performance via simultaneous valence band convergence and carrier concentration optimization , 2016 .

[272]  P. Ying,et al.  Thermoelectric properties of Ag-doped n-type (Bi2Te3)0.9–(Bi2−xAgxSe3)0.1 (x=0–0.4) alloys prepared by spark plasma sintering , 2007 .

[273]  G. Kotliar,et al.  Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals , 2009, Nature.

[274]  G. J. Snyder,et al.  Ultrahigh Thermoelectric Performance in Mosaic Crystals , 2015, Advanced materials.

[275]  Chunlei Dong,et al.  Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler. , 2009, Journal of the American Chemical Society.

[276]  G. J. Snyder,et al.  Thermoelectric properties of indium doped PbTe1-ySey alloys , 2014 .

[277]  Zhifeng Ren,et al.  Relationship between thermoelectric figure of merit and energy conversion efficiency , 2015, Proceedings of the National Academy of Sciences.

[278]  C. Godart,et al.  Thermoelectricity of clathrate I Si and Ge phases , 2002 .

[279]  Eunseog Cho,et al.  Improvement in the thermoelectric performance of the crystals of halogen-substituted In4Se3−xH0.03 (H = F, Cl, Br, I): Effect of halogen-substitution on the thermoelectric properties in In4Se3−x , 2012 .

[280]  P. Ying,et al.  Crystal structure analysis and thermoelectric properties of p-type pseudo-binary (Al2Te3)x–(Bi0.5Sb1.5Te3)1−x (x = 0 ∼ 0.2) alloys prepared by spark plasma sintering , 2008 .

[281]  José Maria,et al.  Optimum impurity concentration in semiconductor thermoelements , 1961 .

[282]  J. Bowers,et al.  Right sizes of nano- and microstructures for high-performance and rigid bulk thermoelectrics , 2014, Proceedings of the National Academy of Sciences.

[283]  X. Zhao,et al.  Improved thermoelectric properties of AgSbTe2 based compounds with nanoscale Ag2Te in situ precipitates , 2010 .

[284]  M. Kanatzidis,et al.  Codoping in SnTe: Enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band Convergence. , 2015, Journal of the American Chemical Society.

[285]  Pengxian Lu,et al.  Enhancement of thermoelectric figure of merit in binary-phased La0.3Ce0.37Fe3CoS12–PbTe materials , 2013 .