Active site sequence of hepatic fructose-2,6-bisphosphatase. Homology in primary structure with phosphoglycerate mutase.
暂无分享,去创建一个
The reaction mechanism of rat hepatic fructose-2,6-bisphosphatase involves the formation of a phosphohistidine intermediate. In order to determine the sequence around the active site histidine, the enzyme was incubated with [2-32P]fructose 2,6-bisphosphate, denatured, and treated with trypsin or endoproteinase Lys-C. The resultant labeled 32P-phosphopeptides were purified by gel filtration, anion exchange chromatography, and reverse phase high pressure liquid chromatography. The sequence of the tryptic peptide was determined to be HGESELNLR, while the partial sequence of the endoproteinase Lys-C peptide was IFDVGTRYMVNRVQDHVQSRTAYYLMNIHVTPRSIYLRHGESEL. The active site sequence was compared with the active site sequence of other enzymes that catalyze phospho group transfer via a phosphohistidine intermediate. Active site sequences of phosphoglycerate mutase and bisphosphoglycerate synthase were highly homologous with the active site of fructose-2,6-bisphosphatase implying a structural similarity and a common evolutionary origin.