A homotopy method based on WENO schemes for solving steady state problems of hyperbolic conservation laws

Homotopy continuation is an efficient tool for solving polynomial systems. Its efficiency relies on utilizing adaptive stepsize and adaptive precision path tracking, and endgames. In this article, we apply homotopy continuation to solve steady state problems of hyperbolic conservation laws. A third-order accurate finite difference weighted essentially non-oscillatory (WENO) scheme with Lax-Friedrichs flux splitting is utilized to derive the difference equation. This new approach is free of the CFL condition constraint. Extensive numerical examples in both scalar and system test problems in one and two dimensions demonstrate the efficiency and robustness of the new method.

[1]  Wenrui Hao,et al.  A domain decomposition algorithm for computing multiple steady states of differential equations , 2011 .

[2]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[3]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[4]  Rémi Abgrall,et al.  High Order Fluctuation Schemes on Triangular Meshes , 2003, J. Sci. Comput..

[5]  A. Morgan,et al.  Computing singular solutions to polynomial systems , 1992 .

[6]  Mengping Zhang,et al.  Fifth order fast sweeping WENO scheme for static Hamilton-Jacobi equations with accurate boundary treatment , 2022 .

[7]  Jonathan D. Hauenstein,et al.  Stepsize control for adaptive multiprecision path tracking , 2008 .

[8]  Chi-Wang Shu,et al.  High Order ENO and WENO Schemes for Computational Fluid Dynamics , 1999 .

[9]  Wenrui Hao,et al.  MULTIPLE STABLE STEADY STATES OF A REACTION-DIFFUSION MODEL ON ZEBRAFISH DORSAL-VENTRAL PATTERNING , 2010 .

[10]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[11]  Ruo Li,et al.  A Robust WENO Type Finite Volume Solver for Steady Euler Equations on Unstructured Grids , 2011 .

[12]  A. Morgan,et al.  Computing singular solutions to nonlinear analytic systems , 1990 .

[13]  Rémi Abgrall,et al.  Construction of second order accurate monotone and stable residual distribution schemes for unsteady flow problems , 2003 .

[14]  Chi-Wang Shu,et al.  High order residual distribution conservative finite difference WENO schemes for steady state problems on non-smooth meshes , 2006, J. Comput. Phys..

[15]  M. D. Salas,et al.  Multiple steady states for characteristic initial value problems , 1986 .

[16]  Chi-Wang Shu,et al.  Fast Sweeping Fifth Order WENO Scheme for Static Hamilton-Jacobi Equations with Accurate Boundary Treatment , 2010, J. Sci. Comput..

[17]  Mohamed Mezine,et al.  Construction of second-order accurate monotone and stable residual distribution schemes for steady problems R , 2004 .

[18]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[19]  Jonathan D. Hauenstein,et al.  Software for numerical algebraic geometry: a paradigm and progress towards its implementation , 2008 .

[20]  Jan Verschelde,et al.  Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.

[21]  Wang Chi-Shu,et al.  Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws , 1997 .

[22]  A. Majda,et al.  Multiple Steady States for 1-D Transonic Flow , 1984 .

[23]  Andrew J. Sommese,et al.  Numerical algebraic geometry and algebraic kinematics , 2011, Acta Numerica.

[24]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[25]  Masha Sosonkina,et al.  Algorithm 777: HOMPACK90: a suite of Fortran 90 codes for globally convergent homotopy algorithms , 1997, TOMS.

[26]  Ruo Li,et al.  A robust high-order residual distribution type scheme for steady Euler equations on unstructured grids , 2010, J. Comput. Phys..

[27]  Yong-Tao Zhang,et al.  Third Order WENO Scheme on Three Dimensional Tetrahedral Meshes , 2008 .

[28]  Centro internazionale matematico estivo. Session,et al.  Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .

[29]  Philip L. Roe,et al.  Fluctuation splitting schemes for the 2D Euler equations , 1991 .

[30]  Tien-Yien Li Numerical Solution of Polynomial Systems by Homotopy Continuation Methods , 2003 .

[31]  Chi-Wang Shu,et al.  A New Smoothness Indicator for the WENO Schemes and Its Effect on the Convergence to Steady State Solutions , 2007, J. Sci. Comput..

[32]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[33]  P. L. Roe,et al.  Optimum positive linear schemes for advection in two and three dimensions , 1992 .

[34]  Jonathan D. Hauenstein,et al.  Adaptive Multiprecision Path Tracking , 2008, SIAM J. Numer. Anal..

[35]  Weitao Chen,et al.  Lax-Friedrichs fast sweeping methods for steady state problems for hyperbolic conservation laws , 2013, J. Comput. Phys..

[36]  Georg May,et al.  Relaxation Techniques for High-Order Discretizations of Steady Compressible Inviscid Flows , 2010 .

[37]  Yuan Liu,et al.  Continuation Along Bifurcation Branches for a Tumor Model with a Necrotic Core , 2012, Journal of Scientific Computing.

[38]  Hongkai Zhao,et al.  High Order Fast Sweeping Methods for Static Hamilton–Jacobi Equations , 2006, J. Sci. Comput..

[39]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[40]  A. Morgan,et al.  A power series method for computing singular solutions to nonlinear analytic systems , 1992 .