Inverse Kinematic Analysis of Three Link Mechanism for Fin Actuation of Fish Like Micro Device

In this paper, inverse kinematic analysis of a proposed three link mechanism of a bio-inspired micro scanning device towed underwater by a surface vessel to actuate its aileron fins for its depth control and for its stabilization against roll is performed. Mechanism is actuated by IPMC actuators. To speed up the design verification process, computer aided simulations are used to perform motion analysis of the proposed IPMC actuated mechanism through Pro/Mechanism tool. Inverse kinematic analysis is performed to find out the joint variables of the mechanism to realize fin actuation along desired path. Displacements, velocities and accelerations of the links constructing mechanism are found out to establish their interrelationship. Results are analysed for the study of mechanism efficacy and for sizing the IPMC actuators. This paper contributes to introduce a new approach of virtual prototyping using advanced simulation tools for analysis and design verification of IPMC actuated mechanisms for biomimetic applications before moving into functional prototype stage.