Constants and finite unary relations in qualitative constraint reasoning

Extending qualitative CSPs with the ability of restricting selected variables to finite sets of possible values has been proposed as an interesting research direction with important applications, c ...

[1]  D. Marker Model theory : an introduction , 2002 .

[2]  Libor Barto,et al.  Constraint Satisfaction Problems Solvable by Local Consistency Methods , 2014, JACM.

[3]  Julien Hué,et al.  On the Scope of Qualitative Constraint Calculi , 2014, KI.

[4]  Manolis Koubarakis,et al.  Tractable disjunctions of linear constraints: basic results and applications to temporal reasoning , 2001, Theor. Comput. Sci..

[5]  Manolis Koubarakis,et al.  A Reasoner for the RCC-5 and RCC-8 Calculi Extended with Constants , 2014, AAAI.

[6]  Bruce L. Bauslaugh Core-like properties of infinite graphs and structures , 1995, Discret. Math..

[7]  Jinbo Huang Compactness and Its Implications for Qualitative Spatial and Temporal Reasoning , 2012, KR.

[8]  Peter Jeavons,et al.  Building tractable disjunctive constraints , 2000, J. ACM.

[9]  Sanjiang Li,et al.  Extensionality of the RCC8 Composition Table , 2002, Fundam. Informaticae.

[10]  Andrew U. Frank,et al.  Qualitative Spatial Reasoning with Cardinal Directions , 1991, ÖGAI.

[11]  Markus Junker,et al.  The 116 reducts of (Q, <, a) , 2008, J. Symb. Log..

[12]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[13]  Georg Cantor Über unendliche, lineare Punktmannigfaltigkeiten , 1984 .

[14]  Bernhard Nebel,et al.  Qualitative Spatial Reasoning Using Constraint Calculi , 2007, Handbook of Spatial Logics.

[15]  Christer Bäckström,et al.  A Unifying Approach to Temporal Constraint Reasoning , 1998, Artif. Intell..

[16]  Peter Jonsson,et al.  A Complete Classification of Tractability in RCC-5 , 1997, J. Artif. Intell. Res..

[17]  Manuel Bodirsky,et al.  RCC8 Is Polynomial on Networks of Bounded Treewidth , 2011, IJCAI.

[18]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[19]  Carsten Lutz,et al.  A Tableau Algorithm for Description Logics with Concrete Domains and General TBoxes , 2007, Journal of Automated Reasoning.

[20]  Manuel Bodirsky,et al.  Datalog and constraint satisfaction with infinite templates , 2006, J. Comput. Syst. Sci..

[21]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[22]  Manuel Bodirsky,et al.  The complexity of temporal constraint satisfaction problems , 2010, JACM.

[23]  Anthony G. Cohn,et al.  Qualitative Spatial Representation and Reasoning , 2008, Handbook of Knowledge Representation.

[24]  Manuel Bodirsky,et al.  Qualitative Temporal and Spatial Reasoning Revisited , 2009, J. Log. Comput..

[25]  Sanjiang Li,et al.  On Topological Consistency and Realization , 2006, Constraints.

[26]  Arne Kreutzmann,et al.  Qualitative Spatial and Temporal Reasoning with AND/OR Linear Programming , 2014, ECAI.

[27]  Manuel Bodirsky,et al.  A fast algorithm and datalog inexpressibility for temporal reasoning , 2010, TOCL.

[28]  Fredrik Heintz,et al.  Qualitative Spatio-Temporal Stream Reasoning with Unobservable Intertemporal Spatial Relations Using Landmarks , 2016, AAAI.

[29]  P. Cameron,et al.  Oligomorphic permutation groups , 1990 .

[30]  Peter Jonsson,et al.  Upper and Lower Bounds on the Time Complexity of Infinite-Domain CSPs , 2015, CP.

[31]  C. H. Langford Some Theorems on Deducibility , 1926 .

[32]  Bernhard Nebel,et al.  Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra , 1994, JACM.

[33]  Clément Carbonnel,et al.  The Dichotomy for Conservative Constraint Satisfaction is Polynomially Decidable , 2016, CP.

[34]  Manuel Bodirsky,et al.  Complexity Classification in Infinite-Domain Constraint Satisfaction , 2012, ArXiv.

[35]  Peter Jonsson,et al.  The Reducts of the homogeneous Binary Branching C-Relation , 2016, J. Symb. Log..

[36]  Jaroslav Nesetril,et al.  Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.

[37]  Robin Hirsch,et al.  Expressive Power and Complexity in Algebraic Logic , 1997, J. Log. Comput..

[38]  Dmitriy Zhuk,et al.  A Proof of CSP Dichotomy Conjecture , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[39]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[40]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[41]  Michael Kompatscher,et al.  On the Update Operation in Skew Lattices , 2018, FLAP.

[42]  Andrei A. Bulatov,et al.  A Dichotomy Theorem for Nonuniform CSPs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[43]  Bernhard Nebel,et al.  On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus , 1999, Artif. Intell..

[44]  Robin Hirsch,et al.  Relation Algebras of Intervals , 1996, Artif. Intell..

[45]  Andrei A. Bulatov,et al.  Conservative constraint satisfaction re-revisited , 2014, J. Comput. Syst. Sci..

[46]  Ivo Düntsch,et al.  A relation - algebraic approach to the region connection calculus , 2001, Theor. Comput. Sci..

[47]  Manuel Bodirsky,et al.  Non-dichotomies in Constraint Satisfaction Complexity , 2008, ICALP.

[48]  Michael Pinsker,et al.  Decidability of Definability , 2013, The Journal of Symbolic Logic.

[49]  Dugald Macpherson,et al.  A survey of homogeneous structures , 2011, Discret. Math..

[50]  Manolis Koubarakis,et al.  Consistency of Chordal RCC-8 Networks , 2012, 2012 IEEE 24th International Conference on Tools with Artificial Intelligence.

[51]  Sheng-sheng Wang,et al.  Qualitative constraint satisfaction problems: An extended framework with landmarks , 2013, Artif. Intell..

[52]  Gérard Ligozat,et al.  Reasoning about Cardinal Directions , 1998, J. Vis. Lang. Comput..

[53]  Jae Hee Lee,et al.  A Survey of Qualitative Spatial and Temporal Calculi , 2016, ACM Comput. Surv..

[54]  Peter Jonsson Finite Unary Relations and Qualitative Constraint Satisfaction , 2016, ECAI.

[55]  Peter Jonsson,et al.  A Model-Theoretic View on Qualitative Constraint Reasoning , 2017, J. Artif. Intell. Res..

[56]  Peter Jeavons,et al.  Reasoning about temporal relations: The tractable subalgebras of Allen's interval algebra , 2003, JACM.

[57]  Libor Barto,et al.  The Dichotomy for Conservative Constraint Satisfaction Problems Revisited , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[58]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[59]  Manuel Bodirsky Cores of Countably Categorical Structures , 2007, Log. Methods Comput. Sci..

[60]  Gérard Ligozat,et al.  What Is a Qualitative Calculus? A General Framework , 2004, PRICAI.

[61]  Manolis Koubarakis,et al.  Querying incomplete information in RDF with SPARQL , 2016, Artif. Intell..

[62]  Christos H. Papadimitriou,et al.  On the complexity of integer programming , 1981, JACM.

[63]  Markus Junker,et al.  The 116 reducts of (ℚ, <, a) , 2008, Journal of Symbolic Logic.