Fatigue life prediction using 2‐scale temporal asymptotic homogenization

In this manuscript, fatigue of structures is modelled as a multiscale phenomenon in time domain. Multiple temporal scales are introduced due to the fact that the load period is orders of magnitude smaller than the useful life span of a structural component. The problem of fatigue life prediction is studied within the framework of mathematical homogenization with two temporal co-ordinates. By this approach the original initial boundary value problem is decomposed into coupled micro-chronological (fast time-scale) and macro-chronological (slow time-scale) problems. The life prediction methodology has been implemented in ABAQUS and validated against direct cycle-by-cycle simulations. Copyright © 2004 John Wiley & Sons, Ltd.

[1]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[2]  Qing Yu,et al.  Computational mechanics of fatigue and life predictions for composite materials and structures , 2002 .

[3]  Petr Lukáš,et al.  Influence of strength and stress history on growth and stabilisation of fatigue cracks , 1972 .

[4]  Michael Ortiz,et al.  A cohesive model of fatigue crack growth , 2001 .

[5]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[6]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[7]  F. Erdogan,et al.  Crack-propagation theories. , 1967 .

[8]  R. Forman,et al.  Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures , 1967 .

[9]  Dusan Krajcinovic,et al.  The Continuous Damage Theory of Brittle Materials, Part 1: General Theory , 1981 .

[10]  Jean-Louis Chaboche,et al.  Continuous damage mechanics — A tool to describe phenomena before crack initiation☆ , 1981 .

[11]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[12]  Jacob Fish,et al.  Temporal homogenization of viscoelastic and viscoplastic solids subjected to locally periodic loading , 2002 .

[13]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[14]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—II. Computational aspects , 1987 .

[15]  E. Wolf Fatigue crack closure under cyclic tension , 1970 .

[16]  O. E. Wheeler Spectrum Loading and Crack Growth , 1972 .

[17]  M. E. Haddad,et al.  Prediction of non propagating cracks , 1979 .

[18]  J. Chaboche Continuum Damage Mechanics: Part II—Damage Growth, Crack Initiation, and Crack Growth , 1988 .

[19]  Alan Needleman,et al.  Localization of deformation in rate sensitive porous plastic solids , 1983 .

[20]  Jerzy Najar,et al.  Continuous Damage of Brittle Solids , 1987 .

[21]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[22]  S. Suresh Fatigue of materials , 1991 .

[23]  C. L. Chow,et al.  A model of continuum damage mechanics for fatigue failure , 1991, International Journal of Fracture.

[24]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—I. Formulation , 1989 .

[25]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .