Efficient preconditioners for Radau-IIA time discretization of space fractional diffusion equations

This paper is concerned with the construction of efficient preconditioners for systems arising from implicit Runge-Kutta time discretization methods for one-dimensional and two-dimensional space fractional diffusion equations. We consider the third-order, two-stage Radau-IIA method, which leads to a coupled 2 × 2 block system. Our approach is based on a Schur complement formulation for the unknown at the second stage. We present an approximate factorization of the Schur complement and derive the eigenvalue bounds of the preconditioned system. The components of the approximate factorization have the same structure as the system derived from implicit Euler discretization of the problem. Therefore, we reuse the available high performance of implicit Euler discretization preconditioners as the building block for our preconditioners. Several numerical experiments are presented to show the effectiveness of our approaches.

[1]  Siu-Long Lei,et al.  Fast algorithms for high-order numerical methods for space-fractional diffusion equations , 2017, Int. J. Comput. Math..

[2]  Kent-André Mardal,et al.  Order-Optimal Preconditioners for Implicit Runge-Kutta Schemes Applied to Parabolic PDEs , 2007, SIAM J. Sci. Comput..

[3]  Nicholas Hale,et al.  An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[4]  Michael K. Ng,et al.  A multigrid method for linear systems arising from time-dependent two-dimensional space-fractional diffusion equations , 2017, J. Comput. Phys..

[5]  Zhong-Zhi Bai,et al.  Diagonal and Toeplitz splitting iteration methods for diagonal‐plus‐Toeplitz linear systems from spatial fractional diffusion equations , 2017, Numer. Linear Algebra Appl..

[6]  Xiao-Qing Jin,et al.  Preconditioned iterative methods for fractional diffusion equation , 2014, J. Comput. Phys..

[7]  Hao Chen,et al.  Generalized Kronecker product splitting iteration for the solution of implicit Runge–Kutta and boundary value methods , 2015, Numer. Linear Algebra Appl..

[8]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[9]  Michael K. Ng,et al.  A Splitting Preconditioner for Toeplitz-Like Linear Systems Arising from Fractional Diffusion Equations , 2017, SIAM J. Matrix Anal. Appl..

[10]  Siu-Long Lei,et al.  Multilevel Circulant Preconditioner for High-Dimensional Fractional Diffusion Equations , 2016 .

[11]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[12]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[13]  Jiwei Zhang,et al.  Unconditionally Convergent L1-Galerkin FEMs for Nonlinear Time-Fractional Schrödinger Equations , 2017, SIAM J. Sci. Comput..

[14]  O. Axelsson,et al.  Real valued iterative methods for solving complex symmetric linear systems , 2000 .

[15]  Xiaolin Li,et al.  A note on efficient preconditioner of implicit Runge-Kutta methods with application to fractional diffusion equations , 2019, Appl. Math. Comput..

[16]  Feng-Nan Hwang,et al.  A Markov chain-based multi-elimination preconditioner for elliptic PDE problems , 2019, J. Comput. Appl. Math..

[17]  Michael K. Ng,et al.  Efficient preconditioner of one-sided space fractional diffusion equation , 2018 .

[18]  Mehdi Dehghan,et al.  Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations , 2017, J. Comput. Phys..

[19]  Minghua Chen,et al.  Fourth Order Accurate Scheme for the Space Fractional Diffusion Equations , 2014, SIAM J. Numer. Anal..

[20]  Hong Wang,et al.  A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..

[21]  Hao Chen Kronecker product splitting preconditioners for implicit Runge-Kutta discretizations of viscous wave equations , 2016 .

[22]  Qianqian Yang,et al.  A preconditioned numerical solver for stiff nonlinear reaction-diffusion equations with fractional Laplacians that avoids dense matrices , 2015, J. Comput. Phys..

[23]  Jiwei Zhang,et al.  Efficient implementation to numerically solve the nonlinear time fractional parabolic problems on unbounded spatial domain , 2016, J. Comput. Phys..

[24]  J. L. Blue,et al.  Rational approximations to matrix exponential for systems of stiff differential equations , 1970 .

[25]  Hai-Wei Sun,et al.  Multigrid method for fractional diffusion equations , 2012, J. Comput. Phys..

[26]  Owe Axelsson,et al.  A class ofA-stable methods , 1969 .

[27]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[28]  Hao Chen,et al.  A splitting preconditioner for implicit Runge-Kutta discretizations of a partial differential-algebraic equation , 2016, Numerical Algorithms.

[29]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[30]  Laurent O. Jay,et al.  A parallelizable preconditioner for the iterative solution of implicit Runge-Kutta-type methods , 1999 .

[31]  Xueke Pu,et al.  Fractional Partial Differential Equations and their Numerical Solutions , 2015 .

[32]  I. Podlubny Fractional differential equations , 1998 .

[33]  Stefano Serra Capizzano,et al.  Spectral analysis and structure preserving preconditioners for fractional diffusion equations , 2016, J. Comput. Phys..

[34]  Hao Chen,et al.  A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations , 2018, J. Comput. Phys..

[35]  Jiwei Zhang,et al.  Analysis of $L1$-Galerkin FEMs for time-fractional nonlinear parabolic problems , 2016, 1612.00562.

[36]  J. Butcher Implicit Runge-Kutta processes , 1964 .

[37]  W. Deng,et al.  Superlinearly convergent algorithms for the two-dimensional space-time Caputo-Riesz fractional diffusion equation , 2013 .

[38]  Chengjian Zhang,et al.  A linear finite difference scheme for generalized time fractional Burgers equation , 2016 .

[39]  Xiao-Qing Jin,et al.  Preconditioned Iterative Methods for Two-Dimensional Space-Fractional Diffusion Equations , 2015 .

[40]  Luca Bergamaschi,et al.  Two-stage spectral preconditioners for iterative eigensolvers , 2017, Numer. Linear Algebra Appl..

[41]  Hao Chen,et al.  A splitting preconditioner for the iterative solution of implicit Runge-Kutta and boundary value methods , 2014 .

[42]  Owe Axelsson,et al.  Preconditioning methods for high‐order strongly stable time integration methods with an application for a DAE problem , 2015, Numer. Linear Algebra Appl..

[43]  Han Zhou,et al.  A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..

[44]  Siu-Long Lei,et al.  A circulant preconditioner for fractional diffusion equations , 2013, J. Comput. Phys..

[45]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[46]  Hao Chen,et al.  Kronecker product-based structure preserving preconditioner for three-dimensional space-fractional diffusion equations , 2020, Int. J. Comput. Math..

[47]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[48]  Israel Gohberg,et al.  Circulants, displacements and decompositions of matrices , 1992 .

[49]  A. Wathen,et al.  Iterative Methods for Toeplitz Systems , 2005 .

[50]  O. Axelsson On the efficiency of a class of a-stable methods , 1974 .

[51]  Hao Chen,et al.  Block preconditioning strategies for time-space fractional diffusion equations , 2018, Appl. Math. Comput..

[52]  Michael K. Ng,et al.  Preconditioning Techniques for Diagonal-times-Toeplitz Matrices in Fractional Diffusion Equations , 2014, SIAM J. Sci. Comput..

[53]  Siu-Long Lei,et al.  Fast ADI method for high dimensional fractional diffusion equations in conservative form with preconditioned strategy , 2017, Comput. Math. Appl..

[54]  Owe Axelsson,et al.  A comparison of iterative methods to solve complex valued linear algebraic systems , 2014, Numerical Algorithms.