Compact fusion energy based on the spherical tokamak

Tokamak Energy Ltd, UK, is developing spherical tokamaks using high temperature superconductor magnets as a possible route to fusion power using relatively small devices. We present an overview of the development programme including details of the enabling technologies, the key modelling methods and results, and the remaining challenges on the path to compact fusion.

[1]  A. Sykes,et al.  Merging-compression formation of high temperature tokamak plasma , 2017 .

[2]  Laila A. El-Guebaly,et al.  Fusion nuclear science facilities and pilot plants based on the spherical tokamak , 2016 .

[3]  J. Morris,et al.  Implications of toroidal field coil stress limits on power plant design using PROCESS , 2015 .

[4]  J. Menard,et al.  PPPL ST-FNSF Engineering Design Details , 2015 .

[5]  R. Scannell,et al.  High power heating of magnetic reconnection in merging tokamak experimentsa) , 2015 .

[6]  M. Ono,et al.  Recent progress on spherical torus research , 2015 .

[7]  M P Gryaznevich,et al.  Advancing Fusion by Innovations: Smaller, Quicker, Cheaper , 2015 .

[8]  A. E. Costley,et al.  On the power and size of tokamak fusion pilot plants and reactors , 2015 .

[9]  C. G. Windsor,et al.  Heat deposition into the superconducting central column of a spherical tokamak fusion plant , 2015 .

[10]  P. Bonoli,et al.  ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets , 2014, 1409.3540.

[11]  R. Raman,et al.  Solenoid-free plasma start-up in spherical tokamaks , 2014 .

[12]  A. Costley,et al.  Recent Advances on the Spherical Tokamak Route to Fusion Power , 2014, IEEE Transactions on Plasma Science.

[13]  Harald W. Weber,et al.  Suitability of coated conductors for fusion magnets in view of their radiation response , 2014 .

[14]  J. Contributors,et al.  Scaling of the tokamak near the scrape-off layer H-mode power width and implications for ITER , 2013 .

[15]  A. Kirk,et al.  L-mode and inter-ELM divertor particle and heat flux width scaling on MAST , 2013, 1306.6777.

[16]  R. Scannell,et al.  MAST-upgrade divertor facility and assessing performance of long-legged divertors , 2013, 1306.6774.

[17]  John S. Hendricks,et al.  Initial MCNP6 Release Overview , 2012 .

[18]  M. R. O'Brien,et al.  Electron Bernstein wave assisted plasma current start-up in MAST , 2010 .

[19]  C. C. Petty,et al.  Sizing up plasmas using dimensionless parametersa) , 2006 .

[20]  B. Coppi,et al.  Ignitor: physics and progress towards ignition , 2004 .

[21]  W. Kasparek,et al.  Electron-Bernstein-wave current drive in an overdense plasma at the Wendelstein 7-AS stellarator. , 2003, Physical review letters.

[22]  Y. Baranov,et al.  Generation of noninductive current by electron-Bernstein waves on the COMPASS-D Tokamak. , 2002, Physical review letters.

[23]  J. Ahn,et al.  Boundary plasma and divertor phenomena in MAST , 2002 .

[24]  A. Sykes The spherical tokamak programme at Culham , 1999 .

[25]  Dennis J Strickler,et al.  Features of spherical torus plasmas , 1986 .