A polynomial time approximation scheme for rectilinear Steiner minimum tree construction in the presence of obstacles
暂无分享,去创建一个
Jian Liu | George Karypis | Ying Zhao | E. Shragowitz | G. Karypis | Jian Liu | Ying Zhao | E. Shragowitz
[1] Naveed A. Sherwani. VLSI Physical Design Automation , 1995 .
[2] Joseph L. Ganley,et al. Routing a multi-terminal critical net: Steiner tree construction in the presence of obstacles , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.
[3] Sanjeev Arora,et al. Polynomial time approximation schemes for Euclidean TSP and other geometric problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.
[4] Martin Zachariasen,et al. A catalog of Hanan grid problems , 2001, Networks.
[5] Bing Lu,et al. Polynomial Time Approximation Scheme for Symmetric Rectilinear Steiner Arborescence Problem , 2001, J. Glob. Optim..
[6] Bing Lu,et al. Polynomial Time Approximation Scheme for the Rectilinear Steiner Arborescence Problem , 2000, J. Comb. Optim..
[7] Joseph S. B. Mitchell,et al. Guillotine subdivisions approximate polygonal subdivisions: a simple new method for the geometric k-MST problem , 1996, SODA '96.
[8] Joseph S. B. Mitchell,et al. Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems , 1999, SIAM J. Comput..
[9] Greg N. Frederickson,et al. Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..
[10] David S. Johnson,et al. The Rectilinear Steiner Problem is NP-Complete , 1977 .