Length-dependent transport properties of ( 12 , 0 ) ∕ ( n , m ) ∕ ( 12 , 0 ) single-wall carbon nanotube heterostructures

We study the length-dependent transport behaviors of (12,0)/(n,m)/(12,0) heterostructures using a pi-orbital tight-binding model and a Green's function technique. When (n,m) is a semiconducting tube, or a (6,6) tube with sixfold rotational symmetry C-6 on the interfaces, conductance G decreases exponentially with the length L of the (n,m) tube. However, we find an anomalous increase of G with L in the (12,0)/(9,0)/(12,0) heterostructure. We explain this anomalous phenomenon and reproduce the transport behaviors of the heterostructure very well by introducing an exponentially dropped potential (EDP) around the interfaces. This model helps us to understand the physics of carbon nanotubes with finite lengths.

[1]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[2]  Miyamoto,et al.  Ionic cohesion and electron doping of thin carbon tubules with alkali atoms. , 1995, Physical review letters.

[3]  Bingqing Wei,et al.  Miniaturized gas ionization sensors using carbon nanotubes , 2003, Nature.

[4]  S. Okada,et al.  Energetics and electronic structures of encapsulated C60 in a carbon nanotube. , 2001, Physical review letters.

[5]  C. Dekker,et al.  Carbon Nanotube Single-Electron Transistors at Room Temperature , 2001, Science.

[6]  L. Chico,et al.  Carbon-Nanotube-Based Quantum Dot , 1998 .

[7]  Christopher Roland,et al.  Resonant transmission through finite-sized carbon nanotubes , 2001 .

[8]  C. Roland,et al.  Quantum transport through short semiconducting nanotubes: A complex band structure analysis , 2004 .

[9]  J. Kong,et al.  Electrical generation and absorption of phonons in carbon nanotubes , 2004, Nature.

[10]  K. Chang,et al.  Electron transport in telescoping carbon nanotubes , 2002 .

[11]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[12]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[13]  Pablo Jarillo-Herrero,et al.  Electron-hole symmetry in a semiconducting carbon nanotube quantum dot , 2004, Nature.

[14]  Akagi,et al.  Electronic structure of helically coiled cage of graphitic carbon. , 1995, Physical review letters.

[15]  Landauer-type transport theory for interacting quantum wires: application to carbon nanotube y junctions. , 2002, Physical review letters.

[16]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[17]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[18]  D. Srivastava,et al.  Carbon nanotube "T Junctions": formation pathways and conductivity. , 2003, Physical review letters.

[19]  H. Kataura,et al.  Direct observation of Tomonaga–Luttinger-liquid state in carbon nanotubes at low temperatures , 2003, Nature.

[20]  E. Wang,et al.  Quantum conductance of a carbon nanotube superlattice , 2003 .

[21]  Benedict,et al.  Quantum conductance of carbon nanotubes with defects. , 1996, Physical review. B, Condensed matter.

[22]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[23]  S. Louie,et al.  Electronic properties of bromine-doped carbon nanotubes , 2002 .

[24]  Benedict,et al.  Pure carbon nanoscale devices: Nanotube heterojunctions. , 1996, Physical review letters.

[25]  R. Egger Luttinger Liquid Behavior in Multiwall Carbon Nanotubes , 1999, cond-mat/9906170.

[26]  Marco Buongiorno Nardelli,et al.  Electronic transport in extended systems: Application to carbon nanotubes , 1999 .

[27]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.

[28]  Leon Balents,et al.  Luttinger-liquid behaviour in carbon nanotubes , 1998, Nature.

[29]  C. Rocha,et al.  Electronic states in zigzag carbon nanotube quantum dots , 2002 .

[30]  M. Sancho,et al.  Quick iterative scheme for the calculation of transfer matrices: application to Mo (100) , 1984 .

[31]  M. Sancho,et al.  Highly convergent schemes for the calculation of bulk and surface Green functions , 1985 .

[32]  Determination of electron orbital magnetic moments in carbon nanotubes , 2004, Nature.

[33]  M. Dresselhaus,et al.  Tunneling conductance of connected carbon nanotubes. , 1996, Physical review. B, Condensed matter.