Equational Reasoning in Saturation-Based Theorem Proving

5 Rewriting Techniques for Equational Reasoning 9 5.1 Knuth-Bendix Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5.1.1 Basic Concepts in Term Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.1.2 The Completion Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.1.3 Ordered Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.1.4 Ordered Completion and Proof Orderings . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.2 Superposition for Horn Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

[1]  Paul C. Gilmore,et al.  A Proof Method for Quantification Theory: Its Justification and Realization , 1960, IBM J. Res. Dev..

[2]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[3]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[4]  Larry Wos,et al.  The Concept of Demodulation in Theorem Proving , 1967, JACM.

[5]  Gérard Huet,et al.  Constrained resolution: a complete method for higher-order logic. , 1972 .

[6]  Daniel Brand,et al.  Proving Theorems with the Modification Method , 1975, SIAM J. Comput..

[7]  Jean-Marie Hullot,et al.  Canonical Forms and Unification , 1980, CADE.

[8]  Mark E. Stickel,et al.  Complete Sets of Reductions for Some Equational Theories , 1981, JACM.

[9]  Gérard P. Huet,et al.  A Complete Proof of Correctness of the Knuth-Bendix Completion Algorithm , 1981, J. Comput. Syst. Sci..

[10]  L. Wos,et al.  Paramodulation and Theorem-Proving in First-Order Theories with Equality , 1983 .

[11]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[12]  J. A. Robinson,et al.  Automatic Deduction with Hyper-Resolution , 1983 .

[13]  Gerald E. Peterson,et al.  A Technique for Establishing Completeness Results in Theorem Proving with Equality , 1980, SIAM J. Comput..

[14]  Jean H. Gallier,et al.  Logic for Computer Science: Foundations of Automatic Theorem Proving , 1985 .

[15]  Gillier,et al.  Logic for Computer Science , 1986 .

[16]  Nachum Dershowitz,et al.  Orderings for Equational Proofs , 1986, LICS.

[17]  E. Paul On Solving the Equality Problem in Theories Defined by Horn Clauses , 1986, Theor. Comput. Sci..

[18]  Hélène Kirchner,et al.  Completion of a Set of Rules Modulo a Set of Equations , 1986, SIAM J. Comput..

[19]  Jean-Pierre Jouannaud,et al.  Reductive conditional term rewriting systems , 1987, Formal Description of Programming Concepts.

[20]  Nachum Dershowitz,et al.  Termination of Rewriting , 1987, J. Symb. Comput..

[21]  Stéphane Kaplan,et al.  Simplifying Conditional Term Rewriting Systems: Unification, Termination and Confluence , 1987, J. Symb. Comput..

[22]  Michaël Rusinowitch,et al.  On Word Problems in Equational Theories , 1987, ICALP.

[23]  Joxan Jaffar,et al.  Constraint logic programming , 1987, POPL '87.

[24]  Michaël Rusinowitch Démonstration automatique par des techniques de réécritures , 1987 .

[25]  Deepak Kapur,et al.  First-Order Theorem Proving Using Conditional Rewrite Rules , 1988, CADE.

[26]  D. Kapur,et al.  Reduction, superposition and induction: automated reasoning in an equational logic , 1988 .

[27]  Larry Wos,et al.  Automated reasoning - 33 basic research problems , 1988 .

[28]  Nachum Dershowitz,et al.  Completion Without Failure11This research was supported in part by the National Science Foundation under grants DCR 85–13417 and DCR 85–16243. , 1989 .

[29]  Leo Bachmair,et al.  Proof Normalization for Resolution and Paramodulation , 1989, RTA.

[30]  Nachum Dershowitz,et al.  Completion for Rewriting Modulo a Congruence , 1987, Theor. Comput. Sci..

[31]  H. Comon SOLVING SYMBOLIC ORDERING CONSTRAINTS , 1990 .

[32]  C. Kirchner,et al.  Deduction with symbolic constraints , 1990 .

[33]  William McCune,et al.  Skolem Functions and Equality in Automated Deduction , 1990, AAAI.

[34]  Tobias Nipkow,et al.  Ordered Rewriting and Confluence , 1990, CADE.

[35]  Harald Ganzinger,et al.  On Restrictions of Ordered Paramodulation with Simplification , 1990, CADE.

[36]  Gerald E. Peterson,et al.  Using Forcing to Prove Completeness of Resolution and Paramodulation , 1991, J. Symb. Comput..

[37]  Michaël Rusinowitch,et al.  Proving refutational completeness of theorem-proving strategies: the transfinite semantic tree method , 1991, JACM.

[38]  L. Bachmair Canonical Equational Proofs , 1991, Progress in Theoretical Computer Science.

[39]  Michaël Rusinowitch,et al.  Automated deduction with associative-commutative operators , 1991, Applicable Algebra in Engineering, Communication and Computing.

[40]  Harald Ganzinger,et al.  A Completion Procedure for Conditional Equations , 1988, J. Symb. Comput..

[41]  Wayne Snyder,et al.  Basic Paramodulation and Superposition , 1992, CADE.

[42]  E. Paul,et al.  A General Refutational Completeness Result for an Inference Procedure Based on Associative-Commutative Unification , 1992, J. Symb. Comput..

[43]  Albert Rubio,et al.  Theorem Proving with Ordering Constrained Clauses , 1992, CADE.

[44]  Ulrich Wertz,et al.  First-order theorem proving modulo equations , 1992 .

[45]  Albert Rubio,et al.  Basic Superposition is Complete , 1992, ESOP.

[46]  Albert Rubio,et al.  A Precedence-Based Total AC-Compatible Ordering , 1993, RTA.

[47]  Alfonso Miola Symbolic Computation Systems , 1993 .

[48]  Robert Nieuwenhuis,et al.  Simple LPO Constraint Solving Methods , 1993, Inf. Process. Lett..

[49]  Laurent Vigneron,et al.  Associative-Commutative Deduction with Constraints , 1994, CADE.

[50]  Claude Marché,et al.  Normalised rewriting and normalised completion , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[51]  Harald Ganzinger,et al.  Associative-Commutative Superposition , 1994, CTRS.

[52]  Albert Rubio,et al.  AC-Superposition with Constraints: No AC-Unifiers Needed , 1994, CADE.

[53]  Albert Rubio,et al.  Theorem Proving with Ordering and Equality Constrained Clauses , 1995, J. Symb. Comput..

[54]  Wayne Snyder,et al.  Basic Paramodulation , 1995, Inf. Comput..

[55]  Christopher Lynch,et al.  Model Elimination with Basic Ordered Paramodulation , 1995 .

[56]  Andrei Voronkov,et al.  Equality Elimination for the Tableau Method , 1996, DISCO.

[57]  Andrei Voronkov,et al.  What You Always Wanted to Know About Rigid E-Unification , 1996, JELIA.

[58]  Deepak Kapur,et al.  Shostak's Congruence Closure as Completion , 1997, RTA.

[59]  Ortrun Ibens,et al.  Subgoal Alternation in Model Elimination , 1997, TABLEAUX.

[60]  Harald Ganzinger,et al.  Strict basic superposition and chaining , 1997 .

[61]  H. Ganzinger,et al.  A theory of resolution , 1997 .

[62]  Uwe Waldmann Cancellative Abelian monoids in refutational theorem proving , 1997 .

[63]  Michaël Rusinowitch,et al.  Decision problems in ordered rewriting , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[64]  Harald Ganzinger,et al.  Elimination of Equality via Transformation with Ordering Constraints , 1998, CADE.