Sensitivity Analysis for Oscillating Dynamical Systems
暂无分享,去创建一个
Jacob K. White | Paul I. Barton | Bruce Tidor | A. Katharina Wilkins | P. I. Barton | B. Tidor | A. K. Wilkins
[1] Homer F. Walker,et al. NITSOL: A Newton Iterative Solver for Nonlinear Systems , 1998, SIAM J. Sci. Comput..
[2] W. V. Loscutoff,et al. General sensitivity theory , 1972 .
[3] Radu Serban,et al. User Documentation for CVODES: An ODE Solver with Sensitivity Analysis Capabilities , 2002 .
[4] Francis J. Doyle,et al. Sensitivity analysis of oscillatory (bio)chemical systems , 2005, Comput. Chem. Eng..
[5] Rudiyanto Gunawan,et al. Isochron-based phase response analysis of circadian rhythms. , 2006, Biophysical journal.
[6] I. N. Karatsoreos,et al. Chronobiology: biological timekeeping , 2004, Physiology & Behavior.
[7] Derya B. Özyurt,et al. Cheap Second Order Directional Derivatives of Stiff ODE Embedded Functionals , 2005, SIAM J. Sci. Comput..
[8] P. I. Barton,et al. Efficient sensitivity analysis of large-scale differential-algebraic systems , 1997 .
[9] N. G. Parke,et al. Ordinary Differential Equations. , 1958 .
[10] Alper Demir,et al. Floquet theory and non‐linear perturbation analysis for oscillators with differential‐algebraic equations , 2000 .
[11] P. Strevens. Iii , 1985 .
[12] Alper Demir,et al. A reliable and efficient procedure for oscillator PPV computation, with phase noise macromodeling applications , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[13] M. Kramer,et al. Sensitivity analysis of oscillatory systems , 1984 .
[14] B. Kendall. Nonlinear Dynamics and Chaos , 2001 .
[15] Willy Govaerts,et al. Computation of Periodic Solution Bifurcations in ODEs Using Bordered Systems , 2003, SIAM J. Numer. Anal..
[16] Daniel B. Forger,et al. A detailed predictive model of the mammalian circadian clock , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[17] B. Ingalls,et al. Autonomously oscillating biochemical systems: parametric sensitivity of extrema and period. , 2004, Systems biology.
[18] E. Rosenwasser,et al. Sensitivity of Automatic Control Systems , 1999 .
[19] Alper Demir. Floquet theory and non‐linear perturbation analysis for oscillators with differential‐algebraic equations , 2000, Int. J. Circuit Theory Appl..
[20] J. Tyson,et al. A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM. , 1999, Biophysical journal.
[21] Peter Ruoff,et al. The Temperature-Compensated Goodwin Model Simulates Many Circadian Clock Properties , 1996 .
[22] P. I. Barton,et al. DAEPACK: An Open Modeling Environment for Legacy Models , 2000 .
[23] Audra E. Kosh,et al. Linear Algebra and its Applications , 1992 .
[24] Mark A. Kramer,et al. Sensitivity analysis of limit cycles with application to the Brusselator , 1984 .
[25] Paul I. Barton,et al. The Per2 Negative Feedback Loop Sets the Period in the Mammalian Circadian Clock Mechanism , 2007, PLoS Comput. Biol..
[26] A. Demir,et al. Phase noise in oscillators: a unifying theory and numerical methods for characterization , 2000 .
[27] Pavan Kumar Hanumolu,et al. Sensitivity Analysis for Oscillators , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[28] S. E. Khaikin,et al. Theory of Oscillators , 1966 .
[29] R. Larter,et al. Sensitivity analysis of autonomous oscillators. Separation of secular terms and determination of structural stability , 1983 .
[30] Franz X. Kärtner,et al. Analysis of white and f-α noise in oscillators , 1990, Int. J. Circuit Theory Appl..