Nets, ( t, s )-Sequences, and Algebraic Geometry
暂无分享,去创建一个
[1] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[2] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[3] D. Hayes. Explicit class field theory for rational function fields , 1974 .
[4] H. Niederreiter. Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .
[5] S. Srinivasan,et al. On two-dimensional Hammersley's sequences , 1978 .
[6] H. Keng,et al. Applications of number theory to numerical analysis , 1981 .
[7] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[8] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[9] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[10] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[11] Harald Niederreiter,et al. Orthogonal arrays and other combinatorial aspects in the theory of uniform point distributions in unit cubes , 1992, Discret. Math..
[12] Shu Tezuka,et al. Polynomial arithmetic analogue of Halton sequences , 1993, TOMC.
[13] Henning Stichtenoth,et al. Algebraic function fields and codes , 1993, Universitext.
[14] Takeshi Tokuyama,et al. A note on polynomial arithmetic analogue of Halton sequences , 1994, TOMC.
[15] Wolfgang Ch. Schmid,et al. Multivariate Walsh series, digital nets and quasi-Monte Carlo integration , 1995 .
[16] Harald Niederreiter,et al. Low-discrepancy sequences obtained from algebraic function fields over finite fields , 1995 .
[17] H. Niederreiter,et al. A construction of low-discrepancy sequences using global function fields , 1995 .
[18] Henning Stichtenoth,et al. Algebraic function fields over finite fields with many rational places , 1995, IEEE Trans. Inf. Theory.
[19] S. Hansen. Rational Points on Curves over Finite Fields , 1995 .
[20] H. Niederreiter,et al. Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .
[21] Gary L. Mullen,et al. Construction of digital ( t,m,s )-nets from linear codes , 1996 .
[22] Harald Niederreiter,et al. Quasirandom points and global function fields , 1996 .
[23] H. Niederreiter,et al. Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration , 1996 .
[24] Michael J. Adams,et al. A Construction for (t, m, s)-nets in Base q , 1997, SIAM J. Discret. Math..
[25] Harald Niederreiter,et al. Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places , 1997 .
[26] Marcel van der Vlugt,et al. Generalized Reed–Muller Codes and Curves with Many Points , 1997 .
[27] Harald Niederreiter,et al. GLOBAL FUNCTION FIELDS WITH MANY RATIONAL PLACES OVER THE QUINARY FIELD , 1997 .
[28] Gary L. Mullen,et al. Improved (T, M, S)-net Parameters from the Gilbert-Varshamov Bound , 1997, Applicable Algebra in Engineering, Communication and Computing.
[29] Wolfgang Ch. Schmid,et al. Bounds for digital nets and sequences , 1997 .
[30] Marcel van der Vlugt,et al. Constructing curves over finite fields with many points by solving linear equations , 1997 .
[31] Harald Niederreiter,et al. Drinfeld modules of rank 1 and algebraic curves with many rational points. II , 1997 .
[32] Harald Niederreiter,et al. A General Method of Constructing Global Function Fields , 1998, ANTS.
[33] H. Niederreiter. Nets, (t, S)-Sequences, and Algebraic Curves Over Finite Fields With Many Rational Points , 1998 .
[34] H. Niederreiter,et al. Towers of Global Function Fields with Asymptotically Many Rational Places and an Improvement on the Gilbert ‐ Varshamov Bound , 1998 .
[35] Harald Niederreiter,et al. Updated tables of parameters of (T, M, S)‐nets , 1999 .
[36] Harald Niederreiter,et al. Drinfeld Modules of Rank 1 and Algebraic Curves with Many Rational Points , 1999 .