Nets, ( t, s )-Sequences, and Algebraic Geometry

The star discrepancy is a classical measure for the irregularity of distribution of finite sets and infinite sequences of points in the s-dimensional unit cube P = [0, 1]8. Point sets and sequences with small star discrepancy in I8 are informally called low-discrepancy point sets, respectively low-discrepancy sequences, in I. It is also customary to speak of sets, respectively sequences, of quasirandom points in 78. Such point sets and sequences play a crucial role in applications of numerical quasi-Monte Carlo methods. In fact, the efficiency of a quasi-Monte Carlo method depends to a significant extent on the quality of the quasirandom points that are employed, i.e., on how small their star discrepancy is. Therefore, it is a matter of considerable interest to devise techniques for the construction of point sets and sequences with as small a star discrepancy as possible. The reader who desires more background on discrepancy theory and quasi-Monte Carlo methods is referred to the books of Hua and Wang [9], Kuipers and Niederreiter [10], and Niederreiter[21], the survey article of Niederreiter [16], and the recent monograph of Drmota and Tichy [4].

[1]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[2]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[3]  D. Hayes Explicit class field theory for rational function fields , 1974 .

[4]  H. Niederreiter Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .

[5]  S. Srinivasan,et al.  On two-dimensional Hammersley's sequences , 1978 .

[6]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[7]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[8]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[9]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[10]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[11]  Harald Niederreiter,et al.  Orthogonal arrays and other combinatorial aspects in the theory of uniform point distributions in unit cubes , 1992, Discret. Math..

[12]  Shu Tezuka,et al.  Polynomial arithmetic analogue of Halton sequences , 1993, TOMC.

[13]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[14]  Takeshi Tokuyama,et al.  A note on polynomial arithmetic analogue of Halton sequences , 1994, TOMC.

[15]  Wolfgang Ch. Schmid,et al.  Multivariate Walsh series, digital nets and quasi-Monte Carlo integration , 1995 .

[16]  Harald Niederreiter,et al.  Low-discrepancy sequences obtained from algebraic function fields over finite fields , 1995 .

[17]  H. Niederreiter,et al.  A construction of low-discrepancy sequences using global function fields , 1995 .

[18]  Henning Stichtenoth,et al.  Algebraic function fields over finite fields with many rational places , 1995, IEEE Trans. Inf. Theory.

[19]  S. Hansen Rational Points on Curves over Finite Fields , 1995 .

[20]  H. Niederreiter,et al.  Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .

[21]  Gary L. Mullen,et al.  Construction of digital ( t,m,s )-nets from linear codes , 1996 .

[22]  Harald Niederreiter,et al.  Quasirandom points and global function fields , 1996 .

[23]  H. Niederreiter,et al.  Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration , 1996 .

[24]  Michael J. Adams,et al.  A Construction for (t, m, s)-nets in Base q , 1997, SIAM J. Discret. Math..

[25]  Harald Niederreiter,et al.  Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places , 1997 .

[26]  Marcel van der Vlugt,et al.  Generalized Reed–Muller Codes and Curves with Many Points , 1997 .

[27]  Harald Niederreiter,et al.  GLOBAL FUNCTION FIELDS WITH MANY RATIONAL PLACES OVER THE QUINARY FIELD , 1997 .

[28]  Gary L. Mullen,et al.  Improved (T, M, S)-net Parameters from the Gilbert-Varshamov Bound , 1997, Applicable Algebra in Engineering, Communication and Computing.

[29]  Wolfgang Ch. Schmid,et al.  Bounds for digital nets and sequences , 1997 .

[30]  Marcel van der Vlugt,et al.  Constructing curves over finite fields with many points by solving linear equations , 1997 .

[31]  Harald Niederreiter,et al.  Drinfeld modules of rank 1 and algebraic curves with many rational points. II , 1997 .

[32]  Harald Niederreiter,et al.  A General Method of Constructing Global Function Fields , 1998, ANTS.

[33]  H. Niederreiter Nets, (t, S)-Sequences, and Algebraic Curves Over Finite Fields With Many Rational Points , 1998 .

[34]  H. Niederreiter,et al.  Towers of Global Function Fields with Asymptotically Many Rational Places and an Improvement on the Gilbert ‐ Varshamov Bound , 1998 .

[35]  Harald Niederreiter,et al.  Updated tables of parameters of (T, M, S)‐nets , 1999 .

[36]  Harald Niederreiter,et al.  Drinfeld Modules of Rank 1 and Algebraic Curves with Many Rational Points , 1999 .