An enhanced dynamic Delaunay triangulation-based path planning algorithm for autonomous mobile robot navigation

An enhanced dynamic Delaunay Triangulation-based (DT) path planning approach is proposed for mobile robots to plan and navigate a path successfully in the context of the Autonomous Challenge of the Intelligent Ground Vehicle Competition (www.igvc.org). The Autonomous Challenge course requires the application of vision techniques since it involves path-based navigation in the presence of a tightly clustered obstacle field. Course artifacts such as switchbacks, ramps, dashed lane lines, trap etc. are present which could turn the robot around or cause it to exit the lane. The main contribution of this work is a navigation scheme based on dynamic Delaunay Triangulation (DDT) that is heuristically enhanced on the basis of a sense of general lane direction. The latter is computed through a "GPS (Global Positioning System) tail" vector obtained from the immediate path history of the robot. Using processed data from a LADAR, camera, compass and GPS unit, a composite local map containing both obstacles and lane line segments is built up and Delaunay Triangulation is continuously run to plan a path. This path is heuristically corrected, when necessary, by taking into account the "GPS tail" . With the enhancement of the Delaunay Triangulation by using the "GPS tail", goal selection is successfully achieved in a majority of situations. The robot appears to follow a very stable path while navigating through switchbacks and dashed lane line situations. The proposed enhanced path planning and GPS tail technique has been successfully demonstrated in a Player/Stage simulation environment. In addition, tests on an actual course are very promising and reveal the potential for stable forward navigation.

[1]  B. Bavarian,et al.  Application Of The Voronoi Diagram Technique For Mobile Robot Navigation , 1988, Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics.

[2]  Deok-Soo Kim,et al.  A sweepline algorithm for Euclidean Voronoi diagram of circles , 2006, Comput. Aided Des..

[3]  Maja J. Mataric,et al.  Integration of representation into goal-driven behavior-based robots , 1992, IEEE Trans. Robotics Autom..

[4]  Yoram Koren,et al.  Histogramic in-motion mapping for mobile robot obstacle avoidance , 1991, IEEE Trans. Robotics Autom..

[5]  Dolores Blanco,et al.  Exploration of a cluttered environment using Voronoi Transform and Fast Marching , 2008, Robotics Auton. Syst..

[6]  Beatriz L. Boada,et al.  Traversable Region Modeling for Outdoor Navigation , 2005, J. Intell. Robotic Syst..

[7]  D.M. Coleman,et al.  O3: An optimal and opportunistic path planner (with obstacle avoidance) using voronoi polygons , 2008, 2008 10th IEEE International Workshop on Advanced Motion Control.

[8]  Silvia Ferrari,et al.  Information-Driven Sensor Path Planning by Approximate Cell Decomposition , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[9]  John F. Canny,et al.  A Voronoi method for the piano-movers problem , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.