Robust finite time stability and stabilisation: A survey of continuous and discontinuous paradigms

The aim of this paper is to provide a survey of the tools for analysis and synthesis of finite time stable controllers. The paper analyses the literature in continuous and discontinuous finite time stabilisation in a unified way covering both the fundamentals as well as the latest techniques available in this non-linear control paradigm. The contribution of the paper lies in its exposition of the robustness properties that continuous and discontinuous controllers guarantee. Some open problems are identified which are relevant to both the theory and practice of finite time stabilisation.

[1]  Yuri B. Shtessel,et al.  A novel adaptive-gain supertwisting sliding mode controller: Methodology and application , 2012, Autom..

[2]  Wilfrid Perruquetti,et al.  Finite time stability of differential inclusions , 2005, IMA J. Math. Control. Inf..

[3]  S. Kahne,et al.  Optimal control: An introduction to the theory and ITs applications , 1967, IEEE Transactions on Automatic Control.

[4]  S. Bhat,et al.  Finite-time stability of homogeneous systems , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[5]  Dennis S. Bernstein,et al.  Geometric homogeneity with applications to finite-time stability , 2005, Math. Control. Signals Syst..

[6]  Yury Orlov,et al.  Switched chattering control vs. backlash/friction phenomena in electrical servo-motors , 2003 .

[7]  E. Moulay,et al.  Finite time stability and stabilization of a class of continuous systems , 2006 .

[8]  Arie Levant,et al.  Higher order sliding modes as a natural phenomenon in control theory , 1996 .

[9]  Zhihong Man,et al.  Non-singular terminal sliding mode control of rigid manipulators , 2002, Autom..

[10]  Vincent Acary,et al.  Chattering-Free Digital Sliding-Mode Control With State Observer and Disturbance Rejection , 2012, IEEE Transactions on Automatic Control.

[11]  Yiguang Hong,et al.  Finite-time stabilization and stabilizability of a class of controllable systems , 2002, Syst. Control. Lett..

[12]  Yuri B. Shtessel,et al.  Super-twisting adaptive sliding mode control: A Lyapunov design , 2010, 49th IEEE Conference on Decision and Control (CDC).

[13]  A. T. Fuller,et al.  Relay control systems optimized for various performance criteria , 1960 .

[14]  Alexander S. Poznyak,et al.  Lyapunov function design for finite-time convergence analysis: "Twisting" controller for second-order sliding mode realization , 2009, Autom..

[15]  Leonid M. Fridman,et al.  Uniform Robust Exact Differentiator , 2011, IEEE Trans. Autom. Control..

[16]  Vadim I. Utkin,et al.  On multi-input chattering-free second-order sliding mode control , 2000, IEEE Trans. Autom. Control..

[17]  Christopher Edwards,et al.  Circumventing the Relative Degree Condition in Sliding Mode Design , 2008 .

[18]  Vadim I. Utkin,et al.  A control engineer's guide to sliding mode control , 1999, IEEE Trans. Control. Syst. Technol..

[19]  V. Utkin Variable structure systems with sliding modes , 1977 .

[20]  Z. Rekasius,et al.  An alternate approach to the fixed terminal point regulator problem , 1964 .

[21]  Vincent Acary,et al.  Implicit Euler numerical scheme and chattering-free implementation of sliding mode systems , 2010, Syst. Control. Lett..

[22]  Dennis S. Bernstein,et al.  Finite-Time Stability of Continuous Autonomous Systems , 2000, SIAM J. Control. Optim..

[23]  Andrey Polyakov,et al.  Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems , 2012, IEEE Transactions on Automatic Control.

[24]  Alessandro Astolfi,et al.  Homogeneous Approximation, Recursive Observer Design, and Output Feedback , 2008, SIAM J. Control. Optim..

[25]  Robert Engel,et al.  A continuous-time observer which converges in finite time , 2002, IEEE Trans. Autom. Control..

[26]  Jie Huang,et al.  On an output feedback finite-time stabilization problem , 2001, IEEE Trans. Autom. Control..

[27]  Raul Santiesteban,et al.  Time convergence estimation of a perturbed double integrator: Family of continuous sliding mode based output feedback synthesis , 2013, 2013 European Control Conference (ECC).

[28]  Xinghuo Yu,et al.  Terminal sliding mode control design for uncertain dynamic systems , 1998 .

[29]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[30]  Chunjiang Qian,et al.  A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems , 2005, Proceedings of the 2005, American Control Conference, 2005..

[31]  Y. ORLOV,et al.  Finite Time Stability and Robust Control Synthesis of Uncertain Switched Systems , 2004, SIAM J. Control. Optim..

[32]  Alessandro Pisano,et al.  Sliding mode control: A survey with applications in math , 2011, Math. Comput. Simul..

[33]  S. Gulati,et al.  Terminal sliding modes: a new approach to nonlinear control synthesis , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[34]  Yiguang Hong,et al.  Adaptive finite-time control of nonlinear systems with parametric uncertainty , 2006, IEEE Transactions on Automatic Control.

[35]  Yannick Aoustin,et al.  Finite Time Stabilization of a Perturbed Double Integrator—Part I: Continuous Sliding Mode-Based Output Feedback Synthesis , 2011, IEEE Transactions on Automatic Control.

[36]  Arie Levant,et al.  Homogeneity approach to high-order sliding mode design , 2005, Autom..

[37]  V. Haimo Finite time controllers , 1986 .

[38]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[39]  Franck Plestan,et al.  Higher order sliding mode control based on integral sliding mode , 2007, Autom..

[40]  Lionel Rosier,et al.  Inverse of Lyapunov’s Second Theorem for Measurable Functions , 1992 .

[41]  L. Rosier Homogeneous Lyapunov function for homogeneous continuous vector field , 1992 .

[42]  Asif Chalanga,et al.  Continuous integral sliding mode control: A chattering free approach , 2013, 2013 IEEE International Symposium on Industrial Electronics.

[43]  A. Bacciotti,et al.  Liapunov functions and stability in control theory , 2001 .

[44]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[45]  Arie Levant,et al.  Universal single-input-single-output (SISO) sliding-mode controllers with finite-time convergence , 2001, IEEE Trans. Autom. Control..

[46]  Wilfrid Perruquetti,et al.  Finite-time stability and stabilization: State of the art , 2006 .

[47]  Yury Orlov,et al.  Lyapunov-based settling time estimate and tuning for twisting controller , 2012, IMA J. Math. Control. Inf..

[48]  Christopher Edwards,et al.  Analysis of Sliding Mode Controllers in the Frequency Domain , 2014 .

[49]  S. Gulati,et al.  Control of Nonlinear Systems Using Terminal Sliding Modes , 1992, 1992 American Control Conference.

[50]  M. Kawski Stabilization of nonlinear systems in the plane , 1989 .

[51]  Liang Du,et al.  Finite-time stability for time-varying nonlinear dynamical systems , 2008, 2008 American Control Conference.

[52]  Jaime A. Moreno,et al.  A Lyapunov approach to second-order sliding mode controllers and observers , 2008, 2008 47th IEEE Conference on Decision and Control.

[53]  Wei Lin,et al.  Global finite-time stabilization of a class of uncertain nonlinear systems , 2005, Autom..

[54]  Jaime A. Moreno,et al.  A Lyapunov approach to output feedback control using second-order sliding modes , 2012, IMA J. Math. Control. Inf..

[55]  Michael Defoort,et al.  A novel higher order sliding mode control scheme , 2009, Syst. Control. Lett..

[56]  Yun Li,et al.  Patents, software, and hardware for PID control: an overview and analysis of the current art , 2006, IEEE Control Systems.

[57]  Vadim I. Utkin,et al.  Sliding mode control in discrete-time and difference systems , 1994 .

[58]  Jaime A. Moreno,et al.  Strict Lyapunov Functions for the Super-Twisting Algorithm , 2012, IEEE Transactions on Automatic Control.

[59]  A. Isidori Nonlinear Control Systems , 1985 .

[60]  Alexander S. Poznyak,et al.  Reaching Time Estimation for “Super-Twisting” Second Order Sliding Mode Controller via Lyapunov Function Designing , 2009, IEEE Transactions on Automatic Control.

[61]  Gang Feng,et al.  Finite-time stabilization by state feedback control for a class of time-varying nonlinear systems , 2012, Autom..

[62]  Hong Ren Wu,et al.  A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators , 1994, IEEE Trans. Autom. Control..

[63]  Franck Plestan,et al.  A new algorithm for high‐order sliding mode control , 2008 .

[64]  Leonid M. Fridman,et al.  Output-feedback finite-time stabilization of disturbed LTI systems , 2012, Autom..

[65]  Arie Levant,et al.  On fixed and finite time stability in sliding mode control , 2013, 52nd IEEE Conference on Decision and Control.

[66]  S. Bhat,et al.  Continuous finite-time stabilization of the translational and rotational double integrators , 1998, IEEE Trans. Autom. Control..

[67]  Zhihong Man,et al.  Continuous finite-time control for robotic manipulators with terminal sliding mode , 2003, Autom..

[68]  G. Bartolini,et al.  Chattering avoidance by second-order sliding mode control , 1998, IEEE Trans. Autom. Control..

[69]  John Y. Hung,et al.  Variable structure control: a survey , 1993, IEEE Trans. Ind. Electron..