Intravascular optical coherence tomography on a beating heart model.

The advantages and limitations of using a beating heart model in the development of intravascular optical coherence tomography are discussed. The model fills the gap between bench experiments, performed on phantoms and excised arteries, and whole animal in-vivo preparations. The beating heart model is stable for many hours, allowing for extended measurement times and multiple imaging sessions under in-vivo conditions without the complications of maintaining whole-animal preparation. The perfusate supplying the heart with nutrients can be switched between light scattering blood to a nonscattering perfusate to allow the optical system to be optimized without the need of an efficient blood displacement strategy. Direct access to the coronary vessels means that there is no need for x-ray fluoroscopic guidance of the catheter to the heart, as is the case in whole animal preparation. The model proves to be a valuable asset in the development of our intravascular optical coherence tomography technology.

[1]  P. Serruys,et al.  Optical Coherence Tomography in Cardiovascular Research , 2007 .

[2]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991, LEOS '92 Conference Proceedings.

[3]  M. Sowa,et al.  Characteristics of time-domain optical coherence tomography profiles generated from blood–saline mixtures , 2009, Physics in medicine and biology.

[4]  B E Bouma,et al.  Porcine coronary imaging in vivo by optical coherence tomography. , 2000, Acta cardiologica.

[5]  H. Mantsch,et al.  Visible-near infrared multispectral imaging of the rat dorsal skin flap. , 1999, Journal of biomedical optics.

[6]  A. Rollins,et al.  Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. , 2009, JACC. Cardiovascular interventions.

[7]  J. Fujimoto,et al.  Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. , 1996, Circulation.

[8]  B. Bouma,et al.  Optical coherence tomography for imaging the vulnerable plaque. , 2006, Journal of biomedical optics.

[9]  G Tearney,et al.  Visualization of tissue prolapse between coronary stent struts by optical coherence tomography: comparison with intravascular ultrasound. , 2001, Circulation.

[10]  O. Langendorff,et al.  Untersuchungen am überlebenden Säugethierherzen , 1895, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[11]  R. Deslauriers,et al.  Energy metabolism, intracellular Na+ and contractile function in isolated pig and rat hearts during cardioplegic ischemia and reperfusion:23Na- and31P-NMR studies , 1995, Basic Research in Cardiology.

[12]  B E Bouma,et al.  Imaging of coronary artery microstructure (in vitro) with optical coherence tomography. , 1996, The American journal of cardiology.

[13]  B E Bouma,et al.  Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery. , 1996, Circulation.

[14]  Benjamin J Vakoc,et al.  Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. , 2008, JACC. Cardiovascular imaging.

[15]  O. Langendorff,et al.  Untersuchungen am überlebenden Säugethierherzen , 1898, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[16]  Mark Hewko,et al.  Regional variations in myocardial tissue oxygenation mapped by near-infrared spectroscopic imaging. , 2002, Journal of molecular and cellular cardiology.

[17]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[18]  Guy Lamouche,et al.  Durable coronary artery phantoms for optical coherence tomography , 2009, BiOS.

[19]  Wolfgang Drexler,et al.  High resolution in vivo intra-arterial imaging with optical coherence tomography , 1999, Photonics West - Biomedical Optics.

[20]  Sébastien Vergnole,et al.  Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography. , 2010, Optics express.

[21]  M. Hewko,et al.  Optical delay line using rotating rhombic prisms , 2007, SPIE BiOS.