Fitting subdivision surfaces to unorganized point data using SDM

We study the reconstruction of smooth surfaces from point clouds. We use a new squared distance error term in optimization to fit a subdivision surface to a set of unorganized points, which defines a closed target surface of arbitrary topology. The resulting method is based on the framework of squared distance minimization (SDM) proposed by Pottmann et al. Specifically, with an initial subdivision surface having a coarse control mesh as input, we adjust the control points by optimizing an objective function through iterative minimization of a quadratic approximant of the squared distance function of the target shape. Our experiments show that the new method (SDM) converges much faster than the commonly used optimization method using the point distance error function, which is known to have only linear convergence. This observation is further supported by our recent result that SDM can be derived from the Newton method with necessary modifications to make the Hessian positive definite and the fact that the Newton method has quadratic convergence.

[1]  Takashi Kanai MeshToSS: Converting Subdivision Surfaces from Dense Meshes , 2001, VMV.

[2]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[3]  Josef Hoschek,et al.  Global reparametrization for curve approximation , 1998, Comput. Aided Geom. Des..

[4]  Weiyin Ma,et al.  Catmull-Clark surface fitting for reverse engineering applications , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[5]  Hans-Peter Seidel,et al.  Neural meshes: statistical learning based on normals , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[6]  R. Bank,et al.  Some Refinement Algorithms And Data Structures For Regular Local Mesh Refinement , 1983 .

[7]  Ross T. Whitaker,et al.  A Level-Set Approach to 3D Reconstruction from Range Data , 1998, International Journal of Computer Vision.

[8]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[9]  Marc Alexa,et al.  Approximating and Intersecting Surfaces from Points , 2003, Symposium on Geometry Processing.

[10]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[11]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[12]  David E. Breen,et al.  Semi-regular mesh extraction from volumes , 2000 .

[13]  Peter Schröder,et al.  Fitting subdivision surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[14]  D. Zorin Stationary Subdivision and Multiresolution Surface Representations , 1997 .

[15]  Ying Sun,et al.  Reconstruction from Unorganized Point Sets Using Gamma Shapes , 2004 .

[16]  H. Pottmann,et al.  The d2-Tree: A Hierarchical Representation of the Squared Distance Function , 2003 .

[17]  Helmut Pottmann,et al.  Geometry of the Squared Distance Function to Curves and Surfaces , 2002, VisMath.

[18]  Won-Ki Jeong,et al.  Direct Reconstruction of a Displaced Subdivision Surface from Unorganized Points , 2002, Graph. Model..

[19]  James E. Coolahan A vision for modeling and simulation at APL , 2005 .

[20]  A. Adamson,et al.  Approximating bounded, nonorientable surfaces from points , 2004, Proceedings Shape Modeling Applications, 2004..

[21]  I. P. Ivrissimtzis W-K Neural Meshes: Statistical Learning Methods in Surface Reconstruction , 2003 .

[22]  Wenping Wang,et al.  Control point adjustment for B-spline curve approximation , 2004, Comput. Aided Des..

[23]  Michael Isard,et al.  Active Contours , 2000, Springer London.

[24]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[25]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[26]  Victoria Interrante,et al.  A novel cubic-order algorithm for approximating principal direction vectors , 2004, TOGS.

[27]  Leif Kobbelt,et al.  Parameter Reduction and Automatic Generation of Active Shape Models , 2003, Bildverarbeitung für die Medizin.

[28]  M. Marinov,et al.  Optimization techniques for approximation with subdivision surfaces , 2004, SM '04.

[29]  Thomas Ertl,et al.  Hierarchical Solutions for the Deformable Surface Problem in Visualization , 2000, Graph. Model..

[30]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[31]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[32]  Helmut Pottmann,et al.  Approximation with active B-spline curves and surfaces , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[33]  H. Seidel,et al.  Multi-level partition of unity implicits , 2003 .

[34]  Bert Jüttler,et al.  Least-Squares Fitting of Algebraic Spline Surfaces , 2002, Adv. Comput. Math..

[35]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[37]  Hong Qin,et al.  Intelligent balloon: a subdivision-based deformable model for surface reconstruction of arbitrary topology , 2001, SMA '01.

[38]  Hong Qin,et al.  Extracting Boundary Surface of Arbitrary Topology from Volumetric Datasets , 2001, VG.

[39]  Hiromasa Suzuki,et al.  Subdivision surface fitting to a range of points , 1999, Proceedings. Seventh Pacific Conference on Computer Graphics and Applications (Cat. No.PR00293).

[40]  Helmut Pottmann,et al.  A concept for parametric surface fitting which avoids the parametrization problem , 2003, Comput. Aided Geom. Des..

[41]  Patrick Reuter,et al.  Efficient Reconstruction of Large Scattered Geometric Datasets using the Partition of Unity and Radial Basis Functions , 2004, WSCG.

[42]  Stanley Osher,et al.  Implicit and Nonparametric Shape Reconstruction from Unorganized Data Using a Variational Level Set Method , 2000, Comput. Vis. Image Underst..

[43]  Weiyin Ma,et al.  Parameterization of randomly measured points for least squares fitting of B-spline curves and surfaces , 1995, Comput. Aided Des..

[44]  Weiyin Ma,et al.  Smooth multiple B-spline surface fitting with Catmull%ndash;Clark subdivision surfaces for extraordinary corner patches , 2002, The Visual Computer.