Symbolic computation in structural engineering

Abstract Nowadays computers can perform symbolic calculations––in addition to mere numerical computations for which they were originally designed––and this opens up exciting possibilities in structural engineering and mechanics. Until relatively recently, this computer-algebra option was hardly exploited except for a handful of pioneering enthusiasts. As symbolic computations are finally beginning to experience a reasonably widespread awareness––and usage––it seems timely to review their past applications to structural-mechanics problems and to point to areas where significant advances are yet to come. What emerges is a picture where areas of classical analysis––increasingly neglected since the advent of computers––now re-emerge as attractive computational options, as well as a more balanced view that no longer sees analytical techniques and numerical methods as incompatible opposites but combines their usage in a rational way.

[1]  Nikolaos I. Ioakimidis Elementary applications of MATHEMATICA to the solution of elasticity problems by the finite element method , 1993 .

[2]  A. Noor,et al.  Computerized symbolic manipulation in structural mechanics—Progress and potential , 1979 .

[3]  Jerome J. Connor,et al.  Automatic Generation of Finite Element Matrices , 1970 .

[4]  Dick J. Wilkins Applications of a symbolic algebra manipulation language for composite structures analysis , 1973 .

[5]  Nikolaos I. Ioakimidis,et al.  Constructing elementary databases and using mechanics-related functions and object types in fracture mechanics with mathematica , 1993 .

[6]  Technical Information Branch,et al.  Practical Applications of Symbolic Computation , 1980 .

[7]  Nikolaos I. Ioakimidis The location of discontinuity intervals of sectionally analytic functions: Application to the interface crack problem , 1991 .

[8]  Đorđe Zloković,et al.  Group supermatrices in finite element analysis , 1992 .

[9]  Peter Bettess,et al.  Automatic generation of shape functions for finite element analysis using REDUCE , 1990 .

[10]  P. Pedersen,et al.  Axisymmetric element analysis using analytical computing , 1975 .

[11]  Nikolaos I. Ioakimidis Determination of critical buckling loads with Gröbner bases , 1995 .

[12]  Isaac Elishakoff,et al.  Buckling of polar orthotropic circular plates on elastic foundation by computerized symbolic algebra , 1988 .

[13]  Nikolaos I. Ioakimidis,et al.  Minimax approximation to stress intensity factors with mathematica , 1992 .

[14]  M. Kotsovos,et al.  Shear lag and effective breadth in rectangular plates with material orthotropy. Part 2: Typical results of parametric studies , 1998 .

[15]  Isaac E. Elishakoff,et al.  Application of Symbolic Algebra to the Instability of a Nonconservative System , 1987, J. Symb. Comput..

[16]  H. Benaroya,et al.  Random vibrations with MACSYMA , 1987 .

[17]  Nikolaos I. Ioakimidis BEAMS ON TENSIONLESS ELASTIC FOUNDATION: APPROXIMATE QUANTIFIER ELIMINATION WITH CHEBYSHEV SERIES , 1996 .

[18]  M. Kotsovos,et al.  Single fourier series solutions for rectangular plates under in-plane forces, with particular reference to the basic problem of colinear compression. Part 2: Stress distribution , 1993 .

[19]  Richard H. Gunderson,et al.  Element Stiffness Matrix Generator , 1971 .

[20]  Milija N. Pavlović,et al.  Beams on quasi-Winkler foundations , 1982 .

[21]  Michael D. Kotsovos,et al.  Structural Concrete: Finite-element Analysis for Limit-state Design , 1995 .

[22]  D. V. Griffiths Stiffness matrix of the four‐node quadrilateral element in closed form , 1994 .

[23]  Nikolaos I. Ioakimidis,et al.  Solution of plane elasticity problems with mathematica , 1995 .

[24]  M. Kikuchi Application of the symbolic mathematics system to the finite element program , 1989 .

[25]  Nikolaos I. Ioakimidis The crack tip elastic stress field using computer algebra software , 1991 .

[26]  Pauli Pedersen,et al.  On computer-aided analytic element analysis and the similarities of tetrahedron elements , 1977 .

[27]  R. E. Hobbs,et al.  Closed form stiffness matrix solutions for some commonly used hybrid finite elements , 1998 .

[28]  F. C. Mbakogu,et al.  Closed-form fundamental-frequency estimates for polar orthotropic circular plates , 1998 .

[29]  Grant P. Steven,et al.  Shape functions generation using Macsyma , 2000 .

[30]  S. Hirsekorn,et al.  The scattering of ultrasonic waves by multiphase polycrystals , 1988 .

[31]  Nikolaos I. Ioakimidis Application of mathematica to the direct solution of torsion problems by the energy method , 1992 .

[32]  Sergio Pellegrino,et al.  New approaches to structural mechanics, shells and biological structures , 2002 .

[33]  F. C. Mbakogu,et al.  Bending of clamped orthotropic rectangular plates: a variational symbolic solution , 2000 .

[34]  K. L. Lawrence,et al.  Closed form stiffness matrices and error estimators for plane hierarchic triangular elements , 1991 .

[35]  Kent L. Lawrence,et al.  Explicit expressions for element coordinate transformations by symbolic manipulation , 1989 .

[36]  C. R. Calladine,et al.  The theory of shell structures Aims and methods , 1982 .

[37]  M. Kotsovos,et al.  Orthotropic rectangular plates under in-plane loading part 1: closed-form solutions for stresses , 1995 .

[38]  M N Pavlovic,et al.  EDGE DISTURBANCES IN SPHERICAL SHELLS WITH VARYING GEOMETRIC PARAMETERS AND SUPPORT TYPES, WITH PARTICULAR REFERENCE TO THICKENING ON PEAK STRESSES. , 1991 .

[39]  Stephen Wolfram,et al.  Mathematica: a system for doing mathematics by computer (2nd ed.) , 1991 .

[40]  N. L. Ioakimidis Symbolic computations: A powerful method for the solution of crack problems in fracture mechanics , 1990 .

[41]  Nikolaos I. Ioakimidis,et al.  Application of mathematica to the direct semi-numerical solution of finite element problems , 1992 .

[42]  C. R. Calladine,et al.  Theory of Shell Structures , 1983 .

[43]  R. D. Mills,et al.  Using a Small Algebraic Manipulation System to Solve Differential and Integral Equations by Variational and Approximation Techniques , 1987, J. Symb. Comput..

[44]  Paul S. Wang,et al.  FINGER: A Symbolic System for Automatic Generation of Numerical Programs in Finite Element Analysis , 1986, J. Symb. Comput..

[45]  Milija N. Pavlović,et al.  Rayleigh estimates of the fundamental frequencies of vibration of circular plates , 1996 .

[46]  Nikolaos I. Ioakimidis,et al.  Direct Taylor-series solution of singular integral equations with MAPLE , 1992 .

[47]  Steven J. Fenves,et al.  Symbolic generation of finite element stiffness matrices , 1979 .

[48]  G. Subramanian,et al.  Convenient generation of stiffness matrices for the family of plane triangular elements , 1982 .

[49]  G. T. Anastasselos,et al.  Technical Note: On the evaluation of stress intensity factors for a simple crack under parametric loading , 1994 .

[50]  Milija N. Pavlović,et al.  Computers and structures: Non-numerical applications , 1986 .

[51]  Nikolaos I. Ioakimidis,et al.  Computer-based manipulation of systems of equations in elasticity problems with Gröbner bases , 1993 .

[52]  Abraham I. Beltzer,et al.  Variational and Finite Element Methods: Symbolic Computation Approach , 1990 .

[53]  Jean E. Sammet,et al.  Programming languages - history and fundamentals , 1969, Prentice-Hall series in automatic computation.

[54]  M. Kotsovos,et al.  Orthotropic rectangular plates under in-plane loading part 2: application of the series solution by reference to the problem of colinear compression , 1995 .

[55]  Nikolaos I. Ioakimidis Semi-numerical iterative series solution of linear algebraic equations with MATHEMATICA' , 1992 .

[56]  Ahmed K. Noor,et al.  Mixed isoparametric elements for saint-venant torsion , 1975 .

[57]  Paul S. Wang,et al.  MACSYMA from F to G , 1985, J. Symb. Comput..

[58]  Milija N. Pavlović,et al.  On the Computation of Slab Effective Widths , 1985 .

[59]  M. Kotsovos,et al.  Non-Collinearly Loaded Laminae , 2002 .

[60]  B. Kutzler,et al.  On the Application of Buchberger's Algorithm to Automated Geometry Theorem Proving , 1986, J. Symb. Comput..

[61]  George F. Pinder,et al.  Analytical integration formulae for linear isoparametric finite elements , 1984 .

[62]  Ahmed K. Noor,et al.  Computerized symbolic manipulation in nonlinear finite element analysis , 1981 .

[63]  N. Bardell The application of symbolic computing to the hierarchical finite element method , 1989 .

[64]  Abraham I. Beltzer Engineering Analysis With Maple/Mathematica , 1995 .

[65]  Nikolaos I. Ioakimidis Symbolic computations for the solution of inverse/design problems with Maple , 1994 .

[66]  F. C. Mbakogu,et al.  Some Applications of Computer Algebra to Classical Problems in Plate Theory , 1999 .

[67]  Abraham I. Beltzer,et al.  Engineering Analysis via Symbolic Computation — A Breakthrough , 1990 .

[68]  M. Kotsovos,et al.  Single Fourier series solutions for rectangular plates under in-plane forces, with particular reference to the basic problem of colinear compression. Part 1: Closed-form solution and convergence study , 1993 .

[69]  René A. Tinawi,et al.  Anisotropic tapered elements using displacment models , 1972 .

[70]  E. G. Anastasselou Compatibility differential/difference equations in classical beam problems with the characteristic sets method , 1995 .

[71]  K. L. Lawrence,et al.  Closed-form stiffness matrices for the linear strain and quadratic strain tetrahedron finite elements , 1992 .

[72]  Nikolaos I. Ioakimidis,et al.  Application of computer-generated finite-difference equations to decision and inverse problems in elasticity , 1998 .

[73]  M. Cecchi,et al.  Automatic generation of stiffness matrices for finite element analysis , 1977 .

[74]  G. Yagawa,et al.  A numerical integration scheme for finite element method based on symbolic manipulation , 1990 .

[75]  N. Rizzi,et al.  Symbolic manipulation in buckling and postbuckling analysis , 1985 .

[76]  H. T. Rathod Explicit stiffness matrices for axisymmetric triangular elements , 1988 .

[77]  Ahmed K. Noor,et al.  Mixed isoparametric finite element models of laminated composite shells , 1977 .

[78]  Haym Benaroya,et al.  The Neumann series/Born approximation applied to parametrically excited stochastic systems , 1987 .

[79]  Nikolaos I. Ioakimidis Chebyshev approximations to stress intensity factors: An application of ‘DERIVE’ , 1991 .

[80]  Gordon S. Kino,et al.  A unified theory for elastic wave propagation in polycrystalline materials , 1984 .

[81]  M. Kikuchi Application of the symbolic mathematics system to the finite element program: evaluation of the stiffness matrix of a 4-nodes isoparametric element , 1989 .

[82]  Nikolaos I. Ioakimidis Construction of singular integral equations for interacting straight cracks by using reduce , 1991 .

[83]  H. Rathod Some analytical integration formulae for a four node isoparametric element , 1988 .

[84]  K R Foster,et al.  Symbolic manipulation programs for the personal computer. , 1989, Science.

[85]  E. G. Anastasselou,et al.  Gröbner bases in truss problems with maple , 1994 .

[86]  Milija N. Pavlović,et al.  A SYMMETRY-ADAPTED FLEXIBILITY APPROACH FOR MULTI-STOREY SPACE FRAMES: GENERAL OUTLINE AND SYMMETRY-ADAPTED REDUNDANTS , 1995 .

[87]  J. Calmet Computer Algebra , 1982 .

[88]  Michael D. Kotsovos,et al.  Shear-lag revisited: The use of single fourier series for determining the effective breadth in plated structures , 1997 .

[89]  M. Kotsovos,et al.  Shear lag and effective breadth in rectangular plates with material orthotropy. Part 1: Analytical formulation , 1998 .

[90]  Deepak Kapur,et al.  Using Gröbner Bases to Reason About Geometry Problems , 1986, J. Symb. Comput..

[91]  D. Armbruster,et al.  "Perturbation Methods, Bifurcation Theory and Computer Algebra" , 1987 .