Optimal-tuning PID controller design in the frequency domain with application to a rotary hydraulic system

Abstract In this paper a new PID controller design scheme that uses optimisation in the frequency domain is proposed for industrial process control. An optimal-tuning PID controller is designed to satisfy a set of frequency-domain performance requirements: gain margin, phase margin, crossover frequency and steady-state error. Using an estimated process frequency response, the method can provide optimal PID parameters even in cases where the process dynamics are time variant. This scheme is demonstrated through its application to a rotary hydraulic system and its performance is compared with six alternative PID tuning rules.

[1]  Peter E. Wellstead Non-parametric methods of system identification , 1981, Autom..

[2]  James F. Whidborne,et al.  Critical Control Systems: Theory, Design, and Applications , 1993 .

[3]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[4]  David Pessen,et al.  A New Look at PID-Controller Tuning , 1994 .

[5]  Thomas F. Edgar,et al.  Process Dynamics and Control , 1989 .

[6]  Tore Hägglund,et al.  Automatic tuning of simple regulators with specifications on phase and amplitude margins , 1984, Autom..

[7]  V. Zakian,et al.  Design of dynamical and control systems by the method of inequalities , 1973 .

[8]  C. Hang,et al.  Refinements of the Ziegler-Nichols tuning formula , 1991 .

[9]  Keith R. Godfrey,et al.  Rule-based autotuning based on frequency domain identification , 1998, IEEE Trans. Control. Syst. Technol..

[10]  D. P. Atherton,et al.  Automatic tuning of optimum PID controllers , 1993 .

[11]  Rolf Isermann,et al.  A parameter-adaptive PID-controller with stepwise parameter optimization , 1984, at - Automatisierungstechnik.

[12]  Ioan Doré Landau,et al.  A method for the auto-calibration of PID controllers , 1995, Autom..

[13]  S. Daley,et al.  Optimal PID tuning using direct search algorithms , 1999 .

[14]  Eugenio J. Tacconi,et al.  Complementary rules to Ziegler and Nichols' rules for a regulating and tracking controller , 1989 .

[15]  S Daley Application of a Fast Self-Tuning Control Algorithm to a Hydraulic Test Rig , 1987 .