Efficient Enumeration of Non-isomorphic Ptolemaic Graphs
暂无分享,去创建一个
[1] Uehara Ryuhei,et al. Implementation of Enumeration Algorithm of Connected Bipartite Permutation Graphs , 2019 .
[2] Ryuhei Uehara. The graph isomorphism problem on geometric graphs , 2014, Discret. Math. Theor. Comput. Sci..
[3] Ryuhei Uehara,et al. Graph isomorphism completeness for chordal bipartite graphs and strongly chordal graphs , 2005, Discret. Appl. Math..
[4] Patryk Mikos. Efficient enumeration of non-isomorphic interval graphs , 2019, ArXiv.
[5] Edward Howorka. A characterization of ptolemaic graphs , 1981, J. Graph Theory.
[6] Ryuhei Uehara,et al. Laminar structure of ptolemaic graphs with applications , 2009, Discret. Appl. Math..
[7] Shin-Ichi Nakano,et al. Constant Time Generation of Trees with Specified Diameter , 2004, WG.
[8] Jens Vygen,et al. The Book Review Column1 , 2020, SIGACT News.
[9] Jeremy P. Spinrad,et al. Efficient graph representations , 2003, Fields Institute monographs.
[10] Yota Otachi,et al. Random generation and enumeration of bipartite permutation graphs , 2012, J. Discrete Algorithms.
[11] Toshiki Saitoh,et al. Enumeration of nonisomorphic interval graphs and nonisomorphic permutation graphs , 2020, Theor. Comput. Sci..
[12] Bernhard Korte,et al. Combinatorial Optimization , 1992, NATO ASI Series.
[13] Ryuhei Uehara,et al. Random Generation and Enumeration of Proper Interval Graphs , 2010 .
[14] David Avis,et al. Reverse Search for Enumeration , 1996, Discret. Appl. Math..