Practices to identify and preclude adverse Aircraft-and-Rotorcraft-Pilot Couplings - A design perspective

Understanding, predicting and supressing the inadvertent aircraft oscillations caused by Aircraft/Rotorcraft Pilot Couplings (A/RPC) is a challenging problem for designers. These are potential instabilities that arise from the effort of controlling aircraft with high response actuation systems. The present paper reviews, updates and discusses desirable practices to be used during the design process for unmasking A/RPC phenomena. These practices are stemming from the European Commission project ARISTOTEL Aircraft and Rotorcraft Pilot Couplings – Tools and Techniques for Alleviation and Detection (2010–2013) and are mainly related to aerodynamic and structural modelling of the aircraft/rotorcraft, pilot modelling and A/RPC prediction criteria. The paper proposes new methodologies for precluding adverse A/RPCs events taking into account the aeroelasticity of the structure and pilot biodynamic interaction. It is demonstrated that high-frequency accelerations due to structural elasticity cause negative effects on pilot control, since they lead to involuntary body and limb-manipulator system displacements and interfere with pilot's deliberate control activity (biodynamic interaction) and, finally, worsen handling quality ratings.

[1]  Graham H. Watson,et al.  Positive Wavelet Representation of Fractal Signals and Images , 1993 .

[2]  A. J. Morris,et al.  Incorporation of manufacturing information into an MDO environment , 1999 .

[3]  Michael Jones,et al.  Tau Coupling Investigation Using Positive Wavelet Analysis , 2013 .

[4]  Gareth D. Padfield,et al.  The birth of flight control: An engineering analysis of the Wright brothers’ 1902 glider , 2003, The Aeronautical Journal (1968).

[5]  James F. Whidborne,et al.  Framework for Flight Loads Analysis of Trajectory-Based Manoeuvres with Pilot Models , 2014 .

[6]  David G. Mitchell,et al.  Recommended Practices for Exposing Pilot-Induced Oscillations or Tendencies in the Development Process , 2004 .

[7]  Brian Stadler,et al.  Simulation investigation of Category I and II PIO , 1999 .

[8]  Ronald A. Hess,et al.  Unified Theory for Aircraft Handl!ng Qualities and Adverse Aircraft-Pilot Coupling , 2022 .

[9]  Massimo Gennaretti,et al.  A finite-state aeroelastic model for rotorcraft–pilot coupling analysis , 2014 .

[10]  R. E. Smith,et al.  An in-flight investigation of pilot-induced oscillation suppression filters during the fighter approach and landing task , 1982 .

[11]  Herman G. Kolwey Technical Note: The New ADS‐33 Process: Cautions for Implementation , 1996 .

[12]  Ronald Hess Obtaining multi-loop pursuit-control pilot models from computer simulation , 2008 .

[13]  David G. Mitchell Identifying the Pilot in Pilot-Induced Oscillations , 2000 .

[14]  G. Höhne Roll Ratcheting: Cause and Analysis , 2001 .

[15]  Marion A. Eppler,et al.  Development of Visually Guided Locomotion , 1998 .

[16]  Ronald A. Hess A unified theory for aircraft handling qualities and adverse aircraft-pilot coupling , 1997 .

[17]  Victor Rodchenko,et al.  Handling Qualities Criteria for Roll Control of Highly Augmented Aircraft , 2003 .

[18]  Frans C. T. van der Helm,et al.  A practical biodynamic feedthrough model for helicopters , 2013 .

[19]  Holger Duda Flight control system design considering rate saturation , 1998 .

[20]  Max Lier Statistical Methods for Helicopter Preliminary Design and Sizing , 2011 .

[21]  Mark B. Tischler,et al.  Assessment of Digital Flight-Control Technology for Advanced Combat Rotorcraft , 1989 .

[22]  D. Scheeres,et al.  New Solar Radiation Pressure Force Model for Navigation , 2010 .

[23]  Mark B. Tischler,et al.  Applications of flight control system methods to an advanced combat rotorcraft , 1989 .

[24]  Pavel,et al.  Capturing the switch between point tracking and boundary avoiding pilot behaviour in a PIO event , 2008 .

[25]  Gareth D. Padfield Rotorcraft Handling Qualities Engineering: Managing the Tension between Safety and Performance 32nd Alexander A. Nikolsky Honorary Lecture , 2013 .

[26]  Gareth D. Padfield,et al.  The tau of flight control , 2011, The Aeronautical Journal (1968).

[27]  Giuseppe Quaranta,et al.  Experimental and numerical helicopter pilot characterization for aeroelastic rotorcraft–pilot coupling analysis , 2013 .

[28]  Ryan D. Blake,et al.  Boundary Avoidance Tracking: Consequences (and Uses) of Imposed Boundaries on Pilot-Aircraft Performance , 2009 .

[29]  Gareth D. Padfield,et al.  Handling-Qualities Analysis of the Wright Brothers' 1902 Glider , 2003 .

[30]  N. Goto,et al.  H/sub /spl infin//-model of the human pilot controlling unstable aircraft , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[31]  Max Mulder,et al.  Using the SIMONA Research Simulator for Human-machine Interaction Research , 2003 .

[32]  William Gray,et al.  Boundary Avoidance Tracking: A New Pilot Tracking Model , 2005 .

[33]  Giuseppe Quaranta,et al.  Aeroservoelastic Analysis of Rotorcraft-Pilot Coupling: a Parametric Study , 2010 .

[34]  William Gray,et al.  Handling Qualities Evaluation at the USAF Test Pilot School , 2009 .

[35]  Ronald A. Hess A Preliminary Study of Human Pilot Dynamics in the Control of Time-Varying Systems , 2011 .

[36]  David G. Mitchell,et al.  Nonlinearities and PIO with Advanced Aircraft Control Systems , 2001 .

[37]  Terrence A. Weisshaar,et al.  Merging computational structural tools into multidisciplinary team-based design , 2000 .

[38]  Johnnie A. Ham,et al.  Flight testing and frequency domain analysis for rotorcraft handling qualities characteristics , 1993 .

[39]  David G. Mitchell,et al.  Identifying a PIO Signature - New Techniques Applied to an Old Problem , 2006 .

[40]  William A. Decker,et al.  An Investigation of Rotorcraft Stability-Phase Margin Requirements in Hover , 2009 .

[41]  Ralph H Smith,et al.  Handling Quality Requirements for Advanced Aircraft Design: Longitudinal Mode , 1979 .

[42]  B. P. Lee Recent experience in flight testing for pilot induced oscillations (PIO) on transport aircraft , 2000 .

[43]  Giuseppe Quaranta,et al.  Adverse rotorcraft pilot couplings¿Past, present and future challenges , 2013 .

[44]  Mark B. Tischler,et al.  Aircraft and Rotorcraft System Identification: Engineering Methods with Flight-Test Examples , 2006 .

[45]  M. D. Pavel,et al.  New Insights Into Pilot Behaviour During Hazardous Rotorcraft Pilot Induced Oscillations , 2006 .

[46]  M. A. Diftler,et al.  Helicopter Simulation Development By Correlation With Frequency Sweep Flight Test Data , 1989 .

[47]  George E. Tucker,et al.  Flying quality analysis and flight evaluation of a highly augmented combat rotorcraft , 1991 .

[48]  Anuradha M. Annaswamy,et al.  Active Control Technology for Enhanced Performance Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles , 2001 .

[49]  Ben Lawrence Incorporating Handling Qualities Analysis into Rotorcraft Conceptual Design , 2014 .

[50]  Richard E. Day,et al.  Coupling Dynamics in Aircraft: A Historical Perspective , 1997 .

[51]  Donald A. Johnson Suppression of Pilot-Induced Oscillation (PIO) , 2002 .

[52]  Massimo Gennaretti,et al.  A finite-state aeroelastic model for rotorcraft pilot-assisted-oscillations analysis , 2012 .

[53]  Matthias Heller,et al.  Enhancement of the Nonlinear OLOP-PIO-Criterion Regarding Phase-Compensated Rate Limiters , 2008 .

[54]  Roberto Celi,et al.  Integrated Rotor-Flight Control System Optimization with Aeroelastic and Handling Qualities Constraints , 1995 .

[55]  Ralph H Smith,et al.  A Theory for Longitudinal Short-Period Pilot Induced Oscillations. , 1977 .

[56]  Duane T. McRuer,et al.  AVIATION SAFETY AND PILOT CONTROL: UNDERSTANDING AND PREVENTING UNFAVORABLE PILOT-VEHICLE INTERACTIONS , 1997 .

[57]  P. G. Earwicker,et al.  Wavelet analysis of gust structure in measured atmospheric turbulence data , 1993 .

[58]  Randall E. Bailey,et al.  A quantitative criterion for pilot-induced oscillations - Time domain Neal-Smith criterion , 1996 .

[59]  Marilena D. Pavel,et al.  The Extension of ADS-33—Metrics for Agility Enhancement and Structural Load Alleviation , 2006 .

[60]  Michael Jump,et al.  Prediction of Rotorcraft Pilot-Induced Oscillations Using the Phase-Aggression Criterion , 2013 .

[61]  David G. Mitchell,et al.  A PIO Case Study - Lessons Learned Through Analysis , 2005 .

[62]  J. F. Boer,et al.  Helicopter life cycle cost reduction through pre-design optimisation , 2006 .

[63]  Wim de Boer,et al.  Flight Control Design - Best Practices , 2000 .

[64]  Giuseppe Quaranta,et al.  Aeroelastic and Biodynamic Modelling for Stability Analysis of Rotorcraft-Pilot Coupling Phenomena , 2008 .

[65]  Michael Jones,et al.  Using the phase-aggression criterion to identify rotorcraft pilot coupling events , 2012 .

[66]  Jeffrey D. Sinsay,et al.  Rotorcraft Conceptual Design Environment , 2009 .

[67]  R. Fortenbaugh,et al.  Advanced Flight Control Development for Single-Pilot Attack Helicopters , 1986 .

[68]  M. M. Paassen,et al.  Modeling Human Multimodal Perception and Control Using Genetic Maximum Likelihood Estimation , 2009 .

[69]  R Hosman,et al.  Pilot's perception in the control of aircraft motions. , 1998, Control engineering practice.

[70]  H. Duda Prediction of Pilot-in-the-Loop Oscillations Due to Rate Saturation , 1997 .

[71]  Chris L. Blanken,et al.  Investigation of the effects of bandwidth and time delay on helicopter roll-axis handling qualities , 1994 .

[72]  Joost Venrooij,et al.  Measuring biodynamic feedthrough in helicopters , 2011 .

[73]  Linghai Lu,et al.  Adverse Rotorcraft-Pilot Couplings - Modelling and Prediction of Rigid Body RPC. Sketches from the Work of European Project ARISTOTEL 2010-2013 , 2013 .

[74]  Joost Venrooij,et al.  Impact of pilots’ biodynamic feedthrough on rotorcraft by robust stability , 2013 .

[75]  Joost Venrooij,et al.  Biodynamic Pilot Modelling for Aeroelastic A/RPC , 2013 .

[76]  Mark B. Tischler,et al.  Time and Frequency-Domain Identification and Verification of BO 105 Dynamic Models , 1991 .

[77]  Hafid Smaili,et al.  A Retrospective Survey of Adverse Rotorcraft Pilot Couplings in European Perspective , 2012 .

[78]  Rogers E. Smith,et al.  A Flying Qualities Criterion for the Design of Fighter Flight-Control Systems , 1971 .

[79]  B-dul Iuliu Maniu,et al.  Trigger event - a key factor in adverse Aircraft/Rotorcraft Pilot Couplings , 2012 .

[80]  P.M.T. Zaal Pilot Control Behavior Discrepancies Between Real and Simulated Flight Caused by Limited Motion Stimuli , 2011 .

[81]  Ronald A. Hess,et al.  Analytical Assessment of Flight Simulator Fidelity Using Pilot Models , 2009 .

[82]  Max Mulder,et al.  Identification of Pilot Control Behavior in a Roll-Lateral Helicopter Hover Task , 2007 .

[83]  Duane T. McRuer,et al.  A Review of Quasi-Linear Pilot Models , 1967 .

[84]  Ina Niewind,et al.  Investigations on boundary avoidance tracking and pilot inceptor workload , 2011 .

[85]  Daan M. Pool,et al.  Objective Evaluation of Flight Simulator Motion Cueing Fidelity Through a Cybernetic Approach , 2012 .

[86]  Gareth D. Padfield,et al.  Helicopter Flight Dynamics , 2000 .

[87]  R. Bootsma,et al.  Information Used in Detecting Upcoming Collision , 2003, Perception.

[88]  Linghai Lu,et al.  Tau guidance in boundary-avoidance tracking: new perspectives on pilot-induced oscillations , 2012 .

[89]  David G. Mitchell,et al.  Evolution, Revolution, and Challenges of Handling Qualities , 2004 .

[90]  R A Hess,et al.  Simplified approach for modelling pilot pursuit control behaviour in multi-loop flight control tasks , 2006 .

[91]  Walden,et al.  A Retrospective Survey of Pilot-Structural Coupling Instabilities in Naval Rotorcraft , 2007 .

[92]  Giuseppe Quaranta,et al.  Adverse rotorcraft-pilot coupling: The construction of the test campaigns at the University of Liverpool , 2008 .

[93]  Peter M. T. Zaal,et al.  Estimation of Time-Varying Pilot Model Parameters , 2011 .

[94]  Giuseppe Quaranta,et al.  Effects of Biodynamic Feedthrough in Rotorcraft/Pilot Coupling: Collective Bounce Case , 2013 .

[95]  Alastair K. Cooke,et al.  Review of pilot models used in aircraft flight dynamics , 2014 .

[96]  Pavel,et al.  Progress in the Development of Complementary Handling and Loading Metrics for ADS-33 Manoeuvres , 2003 .

[97]  Johannes Schweiger,et al.  Development and application of the integrated structural design tool LAGRANGE , 1996 .

[98]  David G. Mitchell,et al.  Real-Time Detection of Pilot-Induced Oscillations , 2004 .

[99]  Max Mulder,et al.  New Types of Target Inputs for Multi-Modal Pilot Model Identification , 2008 .

[100]  Raymond M. Kolonay,et al.  A FEDERATED INTELLIGENT PRODUCT ENVIRONMENT , 2000 .

[101]  Roger W. Pratt Flight control systems : practical issues in design and implementation , 2000 .

[102]  Jaroslaw Sobieszczanski-Sobieski,et al.  Multidisciplinary design optimisation (MDO) methods: their synergy with computer technology in the design process , 1999, The Aeronautical Journal (1968).

[103]  P. Hamel Pilot-Induced Oscillations. , 1993 .

[104]  Farrokh Mistree,et al.  Metrics for Assessing Design Freedom and Information Certainty in the Early Stages of Design , 1998 .

[105]  Holger Duda Effects of Rate Limiting Elements in Flight Control Systems - A New PIO-Criterion. , 1995 .

[106]  G. D. Padfield,et al.  Helicopter flying qualities in critical mission task elements initial experience with the dra(bedford) large motion simulator , 1992 .

[107]  Joost Venrooij,et al.  Robust Stability Analysis: a Tool to Assess the Impact of Biodynamic Feedthrough on Rotorcraft , 2012 .

[108]  Gareth D. Padfield,et al.  The making of helicopter flying qualities: a requirements perspective , 1998, The Aeronautical Journal (1968).

[109]  Massimo Gennaretti,et al.  Adverse rotorcraft-pilot coupling: Recent research activities in Europe , 2008 .