Active gels as a description of the actin‐myosin cytoskeleton

This short review presents a qualitative introduction to the hydrodynamic theory of active polar gels and its applications to the mechanics of the cytoskeleton. Active polar gels are viscoelastic materials formed by polar filaments maintained in a nonequilibrium state by constant consumption of energy. In the cytoskeleton of eukaryotic cells, actin filaments are treadmilling and form a viscoelastic gel interacting with myosin molecular motors driven by the hydrolysis of adenosine triphosphate; one can thus consider the actomyosin cytoskeleton as an active polar gel. The hydrodynamic description is generic as it only relies on symmetry arguments. We first use the hydrodynamic approach to discuss the spontaneous generation of flow in an active polar film. Then we give two examples of applications to lamellipodium motility and to instabilities of cortical actin.

[1]  K. Jacobson,et al.  Induction of cortical oscillations in spreading cells by depolymerization of microtubules. , 2001, Cell motility and the cytoskeleton.

[2]  J. Joanny,et al.  Generic phase diagram of active polar films. , 2006, Physical review letters.

[3]  Rita J. Maurice,et al.  Introduction to Modern Statistics. , 1957 .

[4]  T. Svitkina,et al.  Orientational order of the lamellipodial actin network as demonstrated in living motile cells. , 2003, Molecular biology of the cell.

[5]  Frank Jülicher,et al.  Erratum: Asters, Vortices, and Rotating Spirals in Active Gels of Polar Filaments [Phys. Rev. Lett. 92 , 078101 (2004)] , 2004 .

[6]  S. Leibler,et al.  Self-organization of microtubules and motors , 1997, Nature.

[7]  Lars Hufnagel,et al.  On the mechanism of wing size determination in fly development , 2007, Proceedings of the National Academy of Sciences.

[8]  Stefan Schinkinger,et al.  Optical rheology of biological cells. , 2005, Physical review letters.

[9]  P. Janmey,et al.  Elasticity of semiflexible biopolymer networks. , 1995, Physical review letters.

[10]  Denis Wirtz,et al.  Mechanics and dynamics of actin-driven thin membrane protrusions. , 2006, Biophysical journal.

[11]  Lev S Tsimring,et al.  Pattern formation of microtubules and motors: inelastic interaction of polar rods. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  M E Cates,et al.  Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Sriram Ramaswamy,et al.  Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. , 2001, Physical review letters.

[14]  J. Joanny,et al.  Asters, vortices, and rotating spirals in active gels of polar filaments. , 2004, Physical review letters.

[15]  Klemens Rottner,et al.  The lamellipodium: where motility begins. , 2002, Trends in cell biology.

[16]  H. Isambert,et al.  Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins , 1995, The Journal of Biological Chemistry.

[17]  Alex Mogilner,et al.  Mechanics of Motor Proteins and the Cytoskeleton , 2002 .

[18]  B. Shraiman,et al.  Mechanical feedback as a possible regulator of tissue growth. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  K. Takiguchi Heavy meromyosin induces sliding movements between antiparallel actin filaments. , 1991, Journal of biochemistry.

[20]  A. Basu,et al.  Thermal and non-thermal fluctuations in active polar gels , 2008, The European physical journal. E, Soft matter.

[21]  L Mahadevan,et al.  A quantitative analysis of contractility in active cytoskeletal protein networks. , 2008, Biophysical journal.

[22]  L. Edelstein-Keshet,et al.  Actin filament branching and protrusion velocity in a simple 1D model of a motile cell. , 2006, Journal of theoretical biology.

[23]  Active membrane fluctuations studied by micropipet aspiration. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  L. Mahadevan,et al.  Non-equilibration of hydrostatic pressure in blebbing cells , 2005, Nature.

[25]  Jean-Jacques Meister,et al.  Comparative maps of motion and assembly of filamentous actin and myosin II in migrating cells. , 2007, Molecular biology of the cell.

[26]  T C Lubensky,et al.  Microrheology, stress fluctuations, and active behavior of living cells. , 2003, Physical review letters.

[27]  J. Käs,et al.  Growing actin networks form lamellipodium and lamellum by self-assembly. , 2008, Biophysical journal.

[28]  Leah Edelstein-Keshet,et al.  Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. , 2002, Biophysical journal.

[29]  Gary G. Borisy,et al.  Self-polarization and directional motility of cytoplasm , 1999, Current Biology.

[30]  D. Navajas,et al.  Scaling the microrheology of living cells. , 2001, Physical review letters.

[31]  F. Jülicher,et al.  Actively contracting bundles of polar filaments. , 2000, Physical review letters.

[32]  J. Joanny,et al.  Dynamical control of the shape and size of stereocilia and microvilli. , 2007, Biophysical journal.

[33]  Frank Jülicher,et al.  Active hair-bundle motility harnesses noise to operate near an optimum of mechanosensitivity. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[34]  A. Mogilner,et al.  The physics of filopodial protrusion. , 2005, Biophysical journal.

[35]  J. Joanny,et al.  Contractility and retrograde flow in lamellipodium motion , 2006, Physical biology.

[36]  F. Jülicher,et al.  Modeling molecular motors , 1997 .

[37]  P. Gennes,et al.  The physics of liquid crystals , 1974 .

[38]  P. Janmey,et al.  Nonlinear elasticity in biological gels , 2004, Nature.

[39]  Thomas E Schaus,et al.  Performance of a population of independent filaments in lamellipodial protrusion. , 2008, Biophysical journal.

[40]  Micah Dembo,et al.  Separation of Propulsive and Adhesive Traction Stresses in Locomoting Keratocytes , 1999, The Journal of cell biology.

[41]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[42]  D. Marenduzzo,et al.  Hydrodynamics and rheology of active liquid crystals: a numerical investigation. , 2007, Physical review letters.

[43]  F. Nédélec,et al.  Crosslinkers and Motors Organize Dynamic Microtubules to Form Stable Bipolar Arrays in Fission Yeast , 2007, Cell.

[44]  J. Käs,et al.  Neuronal growth: a bistable stochastic process. , 2006, Physical review letters.

[45]  G Salbreux,et al.  Shape oscillations of non-adhering fibroblast cells , 2007, Physical biology.

[46]  Zachary Pincus,et al.  Emergence of Large-Scale Cell Morphology and Movement from Local Actin Filament Growth Dynamics , 2007, PLoS biology.

[47]  Gary G. Borisy,et al.  Arp2/3 Complex and Actin Depolymerizing Factor/Cofilin in Dendritic Organization and Treadmilling of Actin Filament Array in Lamellipodia , 1999, The Journal of cell biology.

[48]  D Stamenović,et al.  Models of cytoskeletal mechanics of adherent cells , 2002, Biomechanics and modeling in mechanobiology.

[49]  Gaudenz Danuser,et al.  Tracking retrograde flow in keratocytes: news from the front. , 2005, Molecular biology of the cell.

[50]  M. Marchetti,et al.  Bridging the microscopic and the hydrodynamic in active filament solutions , 2004, cond-mat/0406276.

[51]  M. M. Khan On constitutive equations for polymer melts and solutions , 1991 .

[52]  J. Joanny,et al.  Spontaneous flow transition in active polar gels , 2005, q-bio/0503022.

[53]  Benjamin Geiger,et al.  Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. , 2006, Current opinion in cell biology.

[54]  Cleopatra Kozlowski,et al.  Cortical Microtubule Contacts Position the Spindle in C. elegans Embryos , 2007, Cell.

[55]  Frank Jülicher,et al.  Active behavior of the Cytoskeleton , 2007 .

[56]  J. Joanny,et al.  Generic theory of active polar gels: a paradigm for cytoskeletal dynamics , 2004, The European physical journal. E, Soft matter.

[57]  Sriram Ramaswamy,et al.  Rheology of active-particle suspensions. , 2003, Physical review letters.

[58]  I. Tuval,et al.  Bacterial swimming and oxygen transport near contact lines. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Michel Bornens,et al.  Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments. , 2005, Biophysical journal.

[60]  F. MacKintosh,et al.  Nonequilibrium Mechanics of Active Cytoskeletal Networks , 2007, Science.

[61]  A. Emons,et al.  Boekbespreking: Molecular biology of the cell, B. Alberts, D. Bray, J. Lewis, M. Raff, K. Robers, D.J. Watson. Garland Publ., New York. 1989. , 1990 .

[62]  Nir S Gov,et al.  Dynamics and morphology of microvilli driven by actin polymerization. , 2006, Physical review letters.

[63]  Dylan T Burnette,et al.  Myosin II functions in actin-bundle turnover in neuronal growth cones , 2006, Nature Cell Biology.